Edge Colourings of Graphs

Michael Stiebitz

(Technical University Ilmenau)
(joint work with L. M. Favrholdt and B. Toft)

For the chromatic index $\chi^{\prime}(G)$ of a (multi)graph G there are two natural lower bounds. On the one hand, $\chi^{\prime}(G) \geq \Delta(G)$ where $\Delta(G)$ is the maximum degree of G. On the other hand, $\chi^{\prime}(G) \geq W(G)$ where

$$
W(G)=\max _{H \subseteq G}\left\lceil\frac{|E(H)|}{\left\lfloor\frac{1}{2}|V(H)|\right\rfloor}\right\rceil
$$

A graph G is called elementary if $\chi^{\prime}(G)=W(G)$. Goldberg conjectured around 1970 that every graph G is elementary provided that $\chi(G) \geq \Delta(G)+2$. For an integer $m \geq 3$, let \mathcal{J}_{m} denote the class of all graphs G such that

$$
\chi^{\prime}(G)>\frac{m}{m-1} \Delta(G)+\frac{m-3}{m-1}
$$

Shannon's theorem implies that \mathcal{J}_{3} is empty. Furthermore, for every integer $m \geq 3$, we have $\mathcal{J}_{m} \subseteq \mathcal{J}_{m+1}$ and the class $\mathcal{J}=\bigcup_{m=3}^{\infty} \mathcal{J}_{m}$ consits of all graphs G such that $\chi^{\prime}(G) \geq \Delta(G)+2$.

A graph G is called critical if $\chi^{\prime}(H)<\chi^{\prime}(G)$ for every proper subgraph H of G. Jakobsen conjectured around 1975 that every critical graph in \mathcal{J}_{m} has at most $m-2$ vertices provided that $m \geq 3$ is odd. Up to now this conjecture is known to be true only for $m \in\{5,7,9,11\}$. In all these cases the proof of the statement that every graph in \mathcal{J}_{m} has at most $m-2$ vertices is based on a proof of the seemingly more general statement that every graph in \mathcal{J}_{m} is elementary. This was proved, independently, by Sørensen for $m=5,7$ (unpublished), by Andersen for $m=5,7$ in 1977, by Goldberg for $m=5$ in 1973 and for $m=9$ in 1984, by Nishizeki and Kashiwagi for $m=11$ in 1990, and, by Tashkinov for $m=11$ in 2001. We use an extension of Tashkinov's method to prove that every graph in \mathcal{J}_{13} is elementary.

