Branchwidth of graphic matroids.

Frédéric Mazoit and Stéphan Thomassé Projet Mascotte INRIA Sophia-Antipolis, France.

A branch-decomposition of a graph G = (V, E) is a ternary tree \mathcal{T} and a bijection from the set of leaves of \mathcal{T} into the set of edges of G. Every edge e of \mathcal{T} partitions $\mathcal{T} \setminus e$ into two subtrees, and thus correspond to a bipartition (E_1, E_2) of E, called *e-separation*. The width of (E_1, E_2) is the number of vertices of G incident to an edge of E_1 and an edge of E_2 . The width of \mathcal{T} is the maximum width of an *e-separation*. Finally, the branchwidth of G is the minimum width of a branch-decomposition of G.

The notion of branchwidth extends naturally to matroids, branch-decompositions being ternary trees which set of leaves is the ground set of the matroid. Here the *width* of a separation (E_1, E_2) is $rk(E_1) + rk(E_2) - rk(E) + 1$, where rk is the rank function of the matroid.

Answering a question of Geelen, Gerards, Robertson and Whittle, we prove that the branchwidth of a bridgeless graph is equal to the branchwidth of its cycle matroid.

Our result directly implies that the branchwidth of a planar bridgeless graph is equal to the branchwidth of its dual. This property was first proved by Seymour and Thomas.