Double-Critical and Contraction-Critical Graphs

Anders Sune Pedersen (joint work with Kawarabayashi and Toft)

December 3, 2007

Abstract

In this talk, mostly based on notes by Bjarne Toft, we present new results on double-critical graphs and on graphs which are both doublecritical and contraction-critical. A connected graph G is said to be double-critical if for any edge $xy \in E(G), \chi(G - \{x, y\}) \leq \chi(G) - 2$, and contraction-critical if for any proper minor H of G, $\chi(H) < \chi(G)$. Lovász conjectured [Theory of Graphs: Proc. Colloquium, Hungary, 1966] that the only double-critical k-chromatic graph $(k \ge 1)$ is the complete k-graph. This conjecture has been proved true for $k \leq 5$ [Stiebitz, Discrete Math. 64, 91–93, 1987], but remains open for $k \geq 6$. We prove, without using the Four Colour Theorem, that any double-critical 6-chromatic graph contains K_6 as a minor, and that any double-critical 7-chromatic graph contains K_7^- . Hadwiger's Conjecture [1943] states that the only contraction-critical k-chromatic $(k \ge 1)$ graph is the complete k-graph; it remains open for $k \ge 7$. Lovász' Conjecture and Hadwiger's Conjecture have the same conclusions, and so, by combining the assumption of Lovász' Conjecture with the assumption of Hadwiger's Conjecture we obtain a conjecture with a stronger assumption. For this combined-Hadwiger-Lovász Conjecture we prove that the only double-critical contraction-critical 7-chromatic graph is the complete 7-graph.