Colouring and distinguishing edges by total labellings

Stephan Brandt
TU Ilmenau

A total k-labelling of a graph $G=(V, E)$ is a function $f: V \cup E \rightarrow$ $\{1,2, \ldots, k\}$. The weight of an edge $u v$ is $w(u v)=f(u)+f(u v)+f(v)$. We investigate edge-distinguishing total k-labellings, where all edge weights must be different, and edge-colouring total k-labellings, where the edge weights of incident edges must be different, i.e. they determine a proper edge colouring of G. In both cases we try to minimize k.

Let G be a graph with m edges and maximum degree Δ. In the case of edge-distinguishing total labellings, our main result is that the natural lower bound

$$
k \geq\left\lceil\max \left\{\frac{m+2}{3}, \frac{\Delta+1}{2}\right\}\right\rceil
$$

is tight for all graphs with $m \geq 111000 \Delta$. Ivančo and Jendrol' conjecture that the bound is tight for all $G \neq K_{5}$.

In the case of edge-colouring total labellings the natural lower bound is $k \geq\left\lceil\frac{\Delta+1}{2}\right\rceil$. This lower bound cannot be tight in general, but we are not aware of any graph, where k must exceed the lower bound by more than one. Our main result here is an upper bound of $k \leq \frac{\Delta}{2}+\mathcal{O}(\sqrt{\Delta \log \Delta})$. In both cases we employ a mixture of graph theoretic and probabilistic methods.

Joint work with K. Budajová, J. Miškuf (Košice), and D. Rautenbach, M. Stiebitz (Ilmenau).

