Vizing's Colouring Algorithm and the Fan Number

Michael Stiebitz

Technische Universität Ilmenau joint work with Diego Scheide

If we colour the vertices of a graph G by a greedy algorithm, then, for the number A(G) of colours used by the algorithm, we have $A(G) \leq \Delta(G) + 1$. In general, though, this upper bound is rather generous. Indeed, if we choose a smallest last ordering of the vertices of G, we obtain $A(G) \leq \operatorname{col}(G) + 1$, where $\operatorname{col}(G)$ denotes the *colouring number* of G.

If we colour the edges of a multigraph G by Vizing's fan algorithm, then, for the number A'(G) of colours used by the algorithm, we have $A'(G) \leq \Delta(G) + \mu(G)$, where $\mu(G)$ denotes the maximum multiplicity. We introduce a new graph parameter $\sigma(G)$ - the so called fan number of G. The fan number behaves similar to the colouring number. In particular, by choosing a suitable edge ordering to start with, we obtain $A'(G) \leq \max{\{\Delta(G), \sigma(G)\}} =: \tau(G)$. Hence τ is an efficiently realizable upper bound for the chromatic index χ' . Furthermore, τ is a lower bound for several well known upper bounds for χ' , including the bounds by Vizing, Shannon and Ore.