Complete minors in large 6-connected graphs

Matt DeVos Rajneesh Hegde Kenichi Kawarabayashi Sergey Norine Robin Thomas Paul Wollan*

In general, the structure of graphs with no K_{6} minor appears to be complicated. However, Jørgensen has conjectured that every six connected graph G that does not contain K_{6} as a minor must contain a vertex v such that $G-v$ is a planar graph. One immediate implication of the conjecture would be to give an alternate proof of the $k=6$ case of Hadwiger's conjecture. We prove that the conjecture is true with the additional assumption that the graph is very large.

Theorem 1 There exists a positive integer N such that every 6-connected graph G with $|V(G)| \geq N$ either contains K_{6} as a minor or there exists a vertex v such that $G-v$ is planar.

We give an outline of the proof of the theorem and the techniques used. We conclude with a brief discussion of possible extensions of Jørgensen's conjecture.

