Mixed Moore Graphs
Leif K. Jørgensen
Aalborg University, Denmark

A Moore graph of diameter D is a graph with the property that for any two vertices x, y there is a unique path of length at most D from x to y.

For a Mixed Moore graph of diameter 2, there are numbers t and z so that every vertex is incident with t undirected edges and has z out-neighbors and z in-neighbours.

Bosák (1979) proved that $t=\frac{c^{2}+3}{4}$ where c divides $(4 z-3)(4 z+5)$. Bosák also constructed a mixed Moore graph with 18 vertices and $t=3, z=1$. It is also known (Gimbert 2001) that there is a unique mixed Moore graph with $t=1$ and any z : the linedigraph of the complete digraph, $L\left(K_{z+2}\right)$.

I was able to find a new mixed Moore graph with 108 vertices and $t=$ $3, z=7$. This graph was found in a computer search for Cayley graphs with these properties.

Bosák's graph is also a Cayley graph and we prove from the characterization of sharply 2 -transitive groups (Zassenhaus 1936) that $L\left(K_{z+2}\right)$ is Cayley graph if and only if $z+2$ is a prime-power.

Finally, we consider attempts to prove non-existence of mixed Moore graphs for some (small) feasible values of t and z.

