Unique colorability and clique minors

Matthias Kriesell

July 30, 2015

Abstract

For a graph G, let $h(G)$ denote the largest k such that G has k pairwise disjoint pairwise adjacent connected nonempty subgraphs, and let $s(G)$ denote the largest k such that G has k pairwise disjoint pairwise adjacent connected subgraphs of size 1 or 2 . Hadwiger's conjecture states that $h(G) \leq \chi(G)$, where $\chi(G)$ is the chromatic number. Seymour conjectured $s(G) \geq|V(G)| / 2$ for all graphs without antitriangles, i. e. three pairwise nonadjacent vertices. Here we concentrate on graphs with exactly one $\chi(G)$-coloring. We prove generalizations of (i) if $\chi(G) \leq 6$ and G has exactly one $\chi(G)$-coloring then $h(G) \geq \chi(G)$, where the proof does not use the four-color-theorem, and (ii) if G has no antitriangle and G has exactly one $\chi(G)$-coloring then $s(G) \geq|V(G)| / 2$.

Matthias Kriesell
Ilmenau University of Technology
Weimarer Straße 25
D-98693 Ilmenau
Germany

