Roots of the chromatic polynomial, spanning trees, and minors

Thomas Perrett

Technical University of Denmark

The chromatic polynomial $P(G, t)$ of a graph G is a polynomial with integer coefficients which counts, for each non-negative integer t, the number of proper t-colourings of G. A real number t is called a chromatic root of G if $P(G, t)=0$. It is known that the intervals $(-\infty, 0),(0,1)$, and $(1,32 / 27]$ contain no chromatic roots of any graph, but that chromatic roots are dense everywhere else. The graphs known to have chromatic roots close to $32 / 27$ have a very precise structure, so that one may extend the zero-free interval $(1,32 / 27]$ for restricted families of graphs. In this context we discuss some recent results involving spanning trees and minors.

