Stability method and the exact solution of the Erdős-T. Sós conjecture

Miklós Simonovits

Rényi Institute of the Hungarian Academy of Science

Many extremal graph conjectures turned out to be solvable, but many degenerate ones (where the excluded graph is bipartite) are still very hopeless. We know the approximate edge-density only in a very few cases.

Embedding a fixed k-vertex tree T_k into an n-vertex graph G_n turned out to be one of the most difficult problems of the solvable ones. In my lecture I shall discuss the following beautiful conjecture.

Conjecture 1 (Erdős-T. Sós conjecture). If T_k is a fixed tree of k vertices, then every graph G_n of n vertices and

$$e(G_n) > \frac{1}{2}(k-2)n$$
 (1)

edges contains T_k .

Our main result is that

Theorem 1 (Ajtai-Komlós-Simonovits-Szemerédi). There exists an integer k_0 for which, if $k > k_0$ then Conjecture 1 holds.

I will sketch the proof of the Erdős-Sós conjecture. In the first part of the proof a weakened Erdős-T. Sós conjecture is proved, according to which for every $\eta > 0$ there exists an integer $n_0(\eta)$ such that if $n, k > n_0(\eta)$ and a graph G on n vertices contains no T_k then

$$e(G_n) \le \frac{1}{2}(k-2)n + \eta n.$$

That proof, combined with some stability methods shows that in most cases either we know that $T_k \subseteq G_n$ even under the weaker condition (1) or we can prove that the structure of G_n is very near to the conjectured extremal graphs: it is the union of small **complete blocks** or some **almost complete bipartite** graphs. Then, for $k > k_0$, applying some elementary arguments, we can embed T_k into G_n using only (1).

This is a joint work with Miklós Ajtai, János Komlós, and Endre Szemerédi. It is strongly connected to the solution of the Loebl-Komlós-Sós conjecture, by Hladký, Komlós, Piguet, Simonovits, Maya Stein, and Endre Szemerédi (see e.g. Arxiv): while in the Erdős-Sós Conjecture we assume that the average degree is large, in the Loebl-Komlós-Sós Conjecture the median degree is assumed to be large to ensure a subtree T_k in G_n .