- Problems
 - Travelling salesman problem (TSP).
 - The assignment problem.
 - Set covering.
 - Feedback arc-set (FAS).
 - Graph partitioning (GP).
 - Maximum Clique and Independent set.
 - Vertex colouring.
 - Edge-colouring.
 - Vertex cover.
 - Max k-satisfiability (even max 2-SAT is NP-hard).
 - Minimum spanning strong subdigraph and minimum spanning 2edge-connected subgraph.
 - Minimum maximum degree spanning trees.
 - Knapsack, Bin packing and cutting steel plates.
 - The travelling tournament problem.
- Neighbourhoods
 - 1-opt, 2-opt, k-opt for TSP, GP, QAP, FAS etc
 - Eksponential neighbourhoods for TSP via minimum weight matching:
 - 1. Given tour $v_1u_1v_2u_2\ldots v_ku_kv_1$ with cost function c on the edges.
 - 2. Form a complete bipartite graph G with partition $V = \{v_1, v_2, \ldots, v_k\}$ and $U = \{u_1, u_2, \ldots, u_k\}$.
 - 3. Assign the weight $c(v_i u_j) + c(u_j v_{i+1})$ to the edge $v_i u_j$ for $1 \le i, j \le k$ indices are modulo k.
 - 4. Find a minimum weight perfect matching M in G in polynomial time.
 - 5. Let π be the permutation so that $M = \{v_1 u_{\pi(1)}, v_2 u_{\pi(2)}, \dots, v_k u_{\pi(k)}\}$
 - 6. Take $v_1 u_{\pi(1)} v_2 u_{\pi(2)} \dots v_k u_{\pi(k)} v_1$ as the new tour.
 - 7. Repeat the procedure above
 - Pyramidal tours for TSP: these have the form $v_1v_{i_1}v_{i_2}\ldots v_{i_r}v_nv_{j_1}v_{j_2}\ldots v_{j_{n-r-2}}$. Where $i_1 < \ldots < i_r$ and $j_1 > \ldots > j_{n-r-2}$. The best pyramidal tour can be found on polynomial time using dynamic programming.
 - Kempe chains for colouring problems