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1 output

0

1

1

1

Note that this is stable.
Keeps same output until temporary outside pulse.
Can store a bit.
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0 output

0

1

1

1

Note that this is stable.
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0 output

1

0

0

0

Note that this is stable.
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0 output

0

0

1

0

Note that this is stable.
But two different stable outputs are possible with input (0,0).

Flip flops can be implemented differently. Fig. 1.5, p. 38.
Abstraction: know input/output effect —

don’t care about implementation.
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To shorten bit strings for humans:

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A

1011 B

1100 C

1101 D

1110 E

1111 F
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capacitors on chips??? — changes!!!

dynamic memory — need to refresh data, it dissipates
non-volatile memory — doesn’t lose data if power lost

Memory:

byte — 8 bits

0 1 0 1 1 0 0 1

high-order bit low-order bit

most significant bit least significant bit
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Main memory

■ words = cells — fixed size
8, 16, 24, 32, 64 bits

■ words have addresses - count from 0

■ can use consecutive words if need more bits for value

■ can access words in any order random access memory (RAM)

■ get value of word — read or load

■ place value of word — write or store
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Main memory

■ size — power of 2 — addresses fixed length (usually)

◆ 210 = 1024 bytes = 1 kilobyte — 1 KB

◆ 4096 bytes = 4 KB

◆ 220 = 1, 048, 576 bytes = 1 megabyte — 1MB

◆ 230 = 1, 073, 741, 824 bytes = 1 gigabyte — 1GB

◆ 240 = 1, 099, 511, 627, 776 bytes = 1 terabyte — 1TB

■ Some people use these terms for powers of 10.
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Mass (secondary) storage

■ disk, CD’s, magnetic tapes, flash memory

■ CD → DVD → Blu-ray
similar technologies — more capacity

■ on-line vs. off-line — human intervention

■ mechanical, slower (except flash memory)

■ disk

◆ often several in layers — space for heads

◆ read/write heads above tracks

◆ cylinder — tracks on top of each other
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Mass (secondary) storage

■ disk

◆ sector — arc of a track

■ files stored as physical records = sectors
vs. logical records (fields, keys)

■ each contains same number of bits
(512 or 1024 bits, for example)

■ with a group of tracks, each contains same number of
sectors — having different groups, with fewer tracks
toward middle is zoned-bit recording

■ locations of tracks and sectors marked magnetically
during formatting
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Secondary storage

■ flash memory

◆ cameras, cell phones, etc.

◆ not mechanical

◆ not dynamic

◆ hard to erase or rewrite a few locations often

◆ intensive writing reduces lifespan
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Text — characters (symbols) — standards

■ ASCII — appendix A

■ EBCDIC

■ BCD

■ Unicode — implemented by different character encodings

◆ UTF–8 — one byte for ASCII, up to 4 bytes

◆ UCS–2 — older, 16 bit codes

◆ UTF–16 — extends UCS–2, two 16-bit code units
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Integers

■ Base 10 — 234 = 2 · 102 + 3 · 101 + 4 · 100 =
∑

2

i=0
di · 10

i

Generally dk−1...d1d0 =
∑

k−1

i=0
di · 10

i.

■ Base 2 — 11101100 =
1·27+1·26+1·25+0·24+1·23+1·22+0·21+0·20 =

∑
7

i=1
bi ·2

i

Generally bk−1...b1b0 =
∑

k−1

i=0
bi · 2

i.
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Algorithm to find binary representation:

procedure convert(value):
{ Input: integer value }
{ Output: char string str }

str ← λ

remainder ← value mod 2
str ← remainder || str
quotient ← value div 2

while quotient 6= 0 do

remainder ← quotient mod 2
str ← remainder || str
quotient ← quotient div 2

return(str)
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■ Adding binary — unsigned integers
can get extra bit

■ fractions: 101.011 = 53

8
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two’s complement, 32 bits common

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1111 −1
1110 −2
1101 −3
1100 −4
1011 −5
1010 −6
1001 −7
1000 −8
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■ sign bit — high order bit

■ +x, − x — same low order bits to first 1
complement after that

■ addition — same as before (2+(-5))

■ subtraction — How?
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■ sign bit — high order bit

■ +x, − x — same low order bits to first 1
complement after that

■ addition — same as before (2+(-5))

■ subtraction — create negative and add

■ Overflow — 3 + 7 = ?
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■ sign bit — high order bit

■ +x, − x — same low order bits to first 1
complement after that

■ addition — same as before (2+(-5))

■ subtraction — create negative and add

■ Overflow — 3 + 7 = 1010 = −6
2,147,483,646 OK without overflow in 32-bit
overflow bit can be checked
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with 4 bits, bias 8 (p.65)

1111 7
1110 6
1101 5
1100 4
1011 3
1010 2
1001 1
1000 0
0111 −1
0110 −2
0101 −3
0100 −4
0011 −5
0010 −6
0001 −7
0000 −8

How do you get value?
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with 4 bits, bias 8 (p.65)

1111 7
1110 6
1101 5
1100 4
1011 3
1010 2
1001 1
1000 0
0111 −1
0110 −2
0101 −3
0100 −4
0011 −5
0010 −6
0001 −7
0000 −8

subtract bias to get value
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Textbook doesn’t use implicit leading bit (you should)

sign bit exponent mantissa

exponent — excess notation, bias 4

111 3
110 2
101 1
100 0
011 −1
010 −2
001 −3
000 −4
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Textbook doesn’t use implicit leading bit (you should)

1 0 1 1 1 1 0 0

sign bit exponent mantissa

mantissa — implicit leading bit

It is really 5 bits, with the first bit 1. 1100 → 1.1100

sign — negative

exponent — 011 → − 1
−(1.11 · 2−1) = −7

8
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11

8

mantissa — 1.001 → 0010
exponent — 0 → 100
result — 01000010

How do we represent 25

8
? (Note: can’t in book.)

A. 01010101

B. 00101010

C. 01011101

D. 00111010

Vote at m.socrative.com. Room number 415439.
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11

8

mantissa — 1.001 → 0010
exponent — 0 → 100
result — 01000010

How do we represent 25

8
? (Note: can’t in book.)

[A.] 01010101
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45

8
= 100.101

exponent = 2 → 110

result — 01100010

Last bit is truncated. 45

8
= 41

2
?

(41

2
+ 1

8
) + 1

8
= 41

2
?

41

2
+ (1

8
+ 1

8
) = 43

4
?

Truncation errors and reducing them
— numerical analysis
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What about 1

3
and 1

10
.

A. 1

3
and 1

10
both require truncation.

B. 1

3
requires truncation, but not 1

10

C. 1

10
requires truncation, but not 1

3
.

D. Neither 1

3
nor 1

10
require truncation.

Vote at m.socrative.com. Room number 415439.
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What about 1

3
and 1

10
.

[A.] 1

3
and 1

10
both require truncation.
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■ Images

◆ Bit map — scanner, video camera, etc.

■ image consists of dots — pixels

■ 0 — white; 1 — black

■ colors — use more bits —

◆ red, green, blue components

◆ 3 bytex per pixel

◆ example: 1024 × 1024 pixels

◆ megapixels (how many millions of pixels)

◆ need to compress
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■ Images

◆ Vector techniques — fonts for printers

■ scalable to arbitrary sizes

■ image = lines and curves

■ poorer photographic quality
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Sounds waves

■ sample amplitude at regular intervals — 16 bits
-8000/sec — long distance telephone
-more for music

■ Musical Instrument Digital Interface — MIDI
-musical synthesizers, keyboards, etc.
-records directions for producing sounds (instead of sounds)

-what instrument, how long
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