
Flip flop

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

1 / 31

1 output

0

1

1

1

Note that this is stable.
Keeps same output until temporary outside pulse.
Can store a bit.

Flip flop

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

2 / 31

0 output

0

1

1

1

Note that this is stable.

Flip flop

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

3 / 31

0 output

1

0

0

0

Note that this is stable.

Flip flop

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

4 / 31

0 output

0

0

1

0

Note that this is stable.
But two different stable outputs are possible with input (0,0).

Flip flops can be implemented differently. Fig. 1.5, p. 38.
Abstraction: know input/output effect —

don’t care about implementation.

Hexadecimal Notation

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

5 / 31

To shorten bit strings for humans:

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Storage technology

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

6 / 31

capacitors on chips??? — changes!!!

dynamic memory — need to refresh data, it dissipates
non-volatile memory — doesn’t lose data if power lost

Memory:

byte — 8 bits

0 1 0 1 1 0 0 1

high-order bit low-order bit

most significant bit least significant bit

Storage technology

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

7 / 31

Main memory

■ words = cells — fixed size
8, 16, 24, 32, 64 bits

■ words have addresses - count from 0

■ can use consecutive words if need more bits for value

■ can access words in any order random access memory (RAM)

■ get value of word — read or load

■ place value of word — write or store

Storage technology

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

8 / 31

Main memory

■ size — power of 2 — addresses fixed length (usually)

◆ 210 = 1024 bytes = 1 kilobyte — 1 KB

◆ 4096 bytes = 4 KB

◆ 220 = 1, 048, 576 bytes = 1 megabyte — 1MB

◆ 230 = 1, 073, 741, 824 bytes = 1 gigabyte — 1GB

◆ 240 = 1, 099, 511, 627, 776 bytes = 1 terabyte — 1TB

■ Some people use these terms for powers of 10.

Storage technology

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

9 / 31

Mass (secondary) storage

■ disk, CD’s, magnetic tapes, flash memory

■ CD → DVD → Blu-ray
similar technologies — more capacity

■ on-line vs. off-line — human intervention

■ mechanical, slower (except flash memory)

■ disk

◆ often several in layers — space for heads

◆ read/write heads above tracks

◆ cylinder — tracks on top of each other

Storage technology

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

10 / 31

Mass (secondary) storage

■ disk

◆ sector — arc of a track

■ files stored as physical records = sectors
vs. logical records (fields, keys)

■ each contains same number of bits
(512 or 1024 bits, for example)

■ with a group of tracks, each contains same number of
sectors — having different groups, with fewer tracks
toward middle is zoned-bit recording

■ locations of tracks and sectors marked magnetically
during formatting

Storage technology

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

11 / 31

Secondary storage

■ flash memory

◆ cameras, cell phones, etc.

◆ not mechanical

◆ not dynamic

◆ hard to erase or rewrite a few locations often

◆ intensive writing reduces lifespan

Text

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

12 / 31

Text — characters (symbols) — standards

■ ASCII — appendix A

■ EBCDIC

■ BCD

■ Unicode — implemented by different character encodings

◆ UTF–8 — one byte for ASCII, up to 4 bytes

◆ UCS–2 — older, 16 bit codes

◆ UTF–16 — extends UCS–2, two 16-bit code units

Integers

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

13 / 31

Integers

■ Base 10 — 234 = 2 · 102 + 3 · 101 + 4 · 100 =
∑

2

i=0
di · 10

i

Generally dk−1...d1d0 =
∑

k−1

i=0
di · 10

i.

■ Base 2 — 11101100 =
1·27+1·26+1·25+0·24+1·23+1·22+0·21+0·20 =

∑
7

i=1
bi ·2

i

Generally bk−1...b1b0 =
∑

k−1

i=0
bi · 2

i.

Integers

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

14 / 31

Algorithm to find binary representation:

procedure convert(value):
{ Input: integer value }
{ Output: char string str }

str ← λ

remainder ← value mod 2
str ← remainder || str
quotient ← value div 2

while quotient 6= 0 do

remainder ← quotient mod 2
str ← remainder || str
quotient ← quotient div 2

return(str)

Numbers

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

15 / 31

■ Adding binary — unsigned integers
can get extra bit

■ fractions: 101.011 = 53

8

Two’s complement

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

16 / 31

two’s complement, 32 bits common

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1111 −1
1110 −2
1101 −3
1100 −4
1011 −5
1010 −6
1001 −7
1000 −8

Two’s complement

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

17 / 31

■ sign bit — high order bit

■ +x, − x — same low order bits to first 1
complement after that

■ addition — same as before (2+(-5))

■ subtraction — How?

Two’s complement

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

18 / 31

■ sign bit — high order bit

■ +x, − x — same low order bits to first 1
complement after that

■ addition — same as before (2+(-5))

■ subtraction — create negative and add

■ Overflow — 3 + 7 = ?

Two’s complement

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

19 / 31

■ sign bit — high order bit

■ +x, − x — same low order bits to first 1
complement after that

■ addition — same as before (2+(-5))

■ subtraction — create negative and add

■ Overflow — 3 + 7 = 1010 = −6
2,147,483,646 OK without overflow in 32-bit
overflow bit can be checked

Excess notation

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

20 / 31

with 4 bits, bias 8 (p.65)

1111 7
1110 6
1101 5
1100 4
1011 3
1010 2
1001 1
1000 0
0111 −1
0110 −2
0101 −3
0100 −4
0011 −5
0010 −6
0001 −7
0000 −8

How do you get value?

Excess notation

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

21 / 31

with 4 bits, bias 8 (p.65)

1111 7
1110 6
1101 5
1100 4
1011 3
1010 2
1001 1
1000 0
0111 −1
0110 −2
0101 −3
0100 −4
0011 −5
0010 −6
0001 −7
0000 −8

subtract bias to get value

Floating point

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

22 / 31

Textbook doesn’t use implicit leading bit (you should)

sign bit exponent mantissa

exponent — excess notation, bias 4

111 3
110 2
101 1
100 0
011 −1
010 −2
001 −3
000 −4

Floating point

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

23 / 31

Textbook doesn’t use implicit leading bit (you should)

1 0 1 1 1 1 0 0

sign bit exponent mantissa

mantissa — implicit leading bit

It is really 5 bits, with the first bit 1. 1100 → 1.1100

sign — negative

exponent — 011 → − 1
−(1.11 · 2−1) = −7

8

Floating point

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

24 / 31

11

8

mantissa — 1.001 → 0010
exponent — 0 → 100
result — 01000010

How do we represent 25

8
? (Note: can’t in book.)

A. 01010101

B. 00101010

C. 01011101

D. 00111010

Vote at m.socrative.com. Room number 415439.

Floating point

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

25 / 31

11

8

mantissa — 1.001 → 0010
exponent — 0 → 100
result — 01000010

How do we represent 25

8
? (Note: can’t in book.)

[A.] 01010101

Floating point

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

26 / 31

45

8
= 100.101

exponent = 2 → 110

result — 01100010

Last bit is truncated. 45

8
= 41

2
?

(41

2
+ 1

8
) + 1

8
= 41

2
?

41

2
+ (1

8
+ 1

8
) = 43

4
?

Truncation errors and reducing them
— numerical analysis

Floating point

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

27 / 31

What about 1

3
and 1

10
.

A. 1

3
and 1

10
both require truncation.

B. 1

3
requires truncation, but not 1

10

C. 1

10
requires truncation, but not 1

3
.

D. Neither 1

3
nor 1

10
require truncation.

Vote at m.socrative.com. Room number 415439.

Floating point

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

28 / 31

What about 1

3
and 1

10
.

[A.] 1

3
and 1

10
both require truncation.

Images

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

29 / 31

■ Images

◆ Bit map — scanner, video camera, etc.

■ image consists of dots — pixels

■ 0 — white; 1 — black

■ colors — use more bits —

◆ red, green, blue components

◆ 3 bytex per pixel

◆ example: 1024 × 1024 pixels

◆ megapixels (how many millions of pixels)

◆ need to compress

Images

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

30 / 31

■ Images

◆ Vector techniques — fonts for printers

■ scalable to arbitrary sizes

■ image = lines and curves

■ poorer photographic quality

Sound

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

31 / 31

Sounds waves

■ sample amplitude at regular intervals — 16 bits
-8000/sec — long distance telephone
-more for music

■ Musical Instrument Digital Interface — MIDI
-musical synthesizers, keyboards, etc.
-records directions for producing sounds (instead of sounds)

-what instrument, how long

	Flip flop
	Flip flop
	Flip flop
	Flip flop
	Hexadecimal Notation
	Storage technology
	Storage technology
	Storage technology
	Storage technology
	Storage technology
	Storage technology
	Text
	Integers
	Integers
	Numbers
	Two's complement
	Two's complement
	Two's complement
	Two's complement
	Excess notation
	Excess notation
	Floating point
	Floating point
	Floating point
	Floating point
	Floating point
	Floating point
	Floating point
	Images
	Images
	Sound

