
Institut for Matematik og Datalogi
Syddansk Universitet

November 13, 2014
JFB

Introduction to Computer Science
F14 – Lab – Week 47

Meet in IMADA’s terminal room with your login information. Work in
groups of size 2 (maybe some of size 3).

The best known public key cryptographic system, RSA, was presented in
lectures. It is one of the systems included in PGP and GPG. Its security is
based on the assumption that factoring large integers is hard. (The system
you are using in GPG is based on discrete logarithms, rather than factor-
ing, but the problems are similar in many ways. The factoring is easier to
understand and test in Maple.)

A user’s public key consists of a large integer n (currently numbers with at
least 1024 bits are recommended, and 2048 is being recommended by many
experts) and an exponent e. The integer n should be a product of two prime
numbers p and q, both of which should be about half as long as n. Thus, in
order to implement the system it must be possible to find two large primes
and multiply them together in a reasonable amount of time. For the security
of the system, it must be the case that no one who does not know p or q

could factor n.

At first glance this seems strange, that one should be able to determine
if a number is prime or not, but not be able to factor it. However, there
are algorithms for testing primality, which can discover that a number is
composite (not prime) without finding any of its factors. (The ones most
commonly used are probabilistic, so they could with small probability declare
a composite number prime; the probability of this happening can be made
arbitrarily small.)

Using a symbolic algebra program called Maple, you should try producing
primes and composites and try factoring.

1. Small numbers.

Start your Maple program, using the command xmaple &. Type restart;
at the beginning to make it easier to execute your worksheet after you

1



have made changes. (You can execute the worksheet after changes from
Execute in the Edit menu.)

Use Help (choose Maple Help) to find out about the function ithprime.
Experiment to find out approximately how big a prime it can find.
When it cannot find such a big prime (in a reasonable amount of time),
you can use the STOP button in order to continue (it is a hand in a
red background). To assign a value to a variable, you use the assign-
ment operator :=; for example x:= ithprime(4);. Multiply two of
the large primes it finds together, and try to factor the result, using
the function ifactor. Notice how quickly the factors are found for these
small numbers. (Large numbers are clearly necessary for security.)

2. Finding larger primes.

In order to find good prime factors p and q for use in RSA, one can
choose random numbers of the required length and check each one for
primality until finding a prime.

Maple contains a function isprime which will test for primality. Try it
on some some small numbers, such as 3, 4, 7, 10. Maple has another
function rand which returns a random 12-digit number. Try typing
x:=rand(); and check if your result is prime. In order to execute
these commands until you find a prime, you can use a while loop. To
continue creating new random numbers until you get a prime, you
can type while (not isprime(x)) do, followed by x:=rand(); and
end do;. (Note that x should be assigned some composite number
before this, so that the loop is executed at least once.) If you write the
loop on more than one line, you should get to the next line using SHIFT
ENTER (shift is for making captial letters) instead of just ENTER.

How many different values were chosen before a prime was found? (I
got 43, but you could get another number.) Now create a second prime
called y (remember that y will need some value before your start your
while loop). Multiply x and y together and try factoring the result.
This should also go relatively quickly.

3. Finding even larger primes.

To get random numbers which are three times as long, you can create
three random numbers a, b and c and create 1024 ∗ a + 1012 ∗ b + c

(10 raised to the power 24 times a, plus 10 raised to the power 12

2



time b, plus c). Unfortunately, two calls to rand in the same statement
will give the same result both times, so you need to choose values for
a and b independently and then combine them. (Suppose you typed
m1 := 10^12*rand() + rand();. Why wouldn’t you ever find a prime
testing values found this way?) Try finding two primes, each 36 digits
long. The first can be found by starting with m1:=4; so you start out
with a composite. Then use the following:
while (not isprime(m1)) do

a := rand();

b := rand();

c := rand();

m1 := 10^24 * a + 10^12 * b + c;

end do;.
Multiply the two primes together and try to factor the result. If your
machine is not fast enough, use the STOP button on the toolbar after
a few minutes; the computation takes too long. Otherwise, create even
longer primes and try factoring them. As you might imagine, no known
algorithm would factor a 1024-bit (about 300 digits) number on your
PC in your lifetime. It is easy to find the primes and multiply them
together, but it is very difficult to factor the result! (Or RSA would
not be secure.)

Try to get a feeling for how long it takes to factor numbers of different
lengths; you can try changing the 1012 or 1024 in your while loops to
larger or smaller values.

4. Find the multiplicative inverse of 25 modulo 43 (a number between 0
and 42, which when multiplied by 25 gives the result 1 modulo 43).
Note that you can find out about the function for computing the Ex-
tended Euclidean Algorithm by typing ?igcdex.

5. Switch your worksheet to Text mode, instead of Math mode, just above
your worksheet. Then to exponentiate modulo 1083, try typing

3&^10293846675 mod 1083;

Next, try removing the & from this statement. Also try 2^5 mod 1083;

Try to figure out why there is a difference with the large exponent.

3



Now, you will be using the program gpg to try encryption. Usage information
can be obtained by typing gpg -h | more (hitting the space bar will get the
rest of it; the vertical line says pipe the output through the next program,
and more shows a page at a time).

1. Create a public and private key using gpg --gen-key. You should
choose DSA and El Gamal, and size 2048. Go to the directory .gnupg

using cd .gnupg. List what is in the directory using ls -al. Try
the commands gpg --list-keys and gpg --fingerprint to list the
keys you have, with the fingerprints, which make it easier for you to
check that you have the correct key from someone. How would you use
fingerprints?

2. You can save your public key in a file in a form that can be seen on a
screen using gpg --export -a Your Name >filename. You are “ex-
porting” your key and specifying where the output should go. Then
look at it using more filename; the -a made it possible to see it rea-
sonably on your screen, since it changes it to ASCII.

3. Mail this file to someone else. (Either in another group or within your
own group.)

4. Try to figure out how to use gpg to “import” the public key you got
from someone else. Check the fingerprint.

5. Create a little file and encrypt it. You can use gpg -sea filename.
What does this do?

6. Mail your file to whoever has your public key. Read their file using the
command gpg -d inputfile >outputfile. Then look at the output
file you created.

7. You can also encrypt a file for your own use using a symmetric key
system protected by a pass phrase. Try using gpg --force-mdc -ca

filename. Then try decrypting as with the file you decrypted previ-
ously. Why might you want to do this?

4


