Institut for Matematik og Datalogi September 24, 2014
Syddansk Universitet JFB

Introduction to Computer Science
E14 — Lab — Week 40

Meet in IMADA’s terminal room with your login information. Work in
groups of size 2 (maybe some of size 3).

The goal of this lab is to help you to gain some understanding of the fact
that most problems have more than one algorithmic solution and that these
solutions can differ greatly as to how practical they are. You will experiment
with different sorting algorithms and compare them. Review sections 5.4, 5.5,
and 5.6 in the textbook (including problem 6 on page 227) before coming to
the lab.

You will be using a sorting simulator, written by Jacob Aae Mikkelsen. It
is available from the course’s homepage. Depending on the Java settings of
your computer, it may start directly. Otherwise, download the file to your
own directory. Then start it up by typing

java —jar Sorting.jar &

Note that the program sorts bars of different lengths, rather than numbers.
It is easy to think of the bars as numbers, and it is easiest to see what is
happening with the bars.

1. Begin with the algorithm Insertion Sort. Click on Start sorting
and watch the algorithm execute. What do the red and green rectangles
mean? How many comparisons are done and how many copies? What
is a copy?

2. Repeat the experiment above. Do you get the same results? Try with
Decreasingly selected elements and Increasingly selected ele-
ments. What are the minimum and maximum number of comparisons
possible with 8 elements? With n elements? Note that after you under-
stand what is happening, you can increase the speed, so that it takes
less time to run.



. Repeat both of the above two steps with Selection sort, Quick sort,
Merge sort, and Randomized Quick sort. Which appears to be fastest?

. How do Selection sort, Quick sort, Merge sort, and Randomized Quick
sort work?

. For Selection sort, if the number of bars is n, the number of comparisons

should be N . .

i=2
Why is this the number of comparisons? How many comparisons should
there theoretically be in this case, where n = 167 How does this compare
with practice?

. Now change from Visualization of algorithms to Timetaking of the
algorithms and use the Settings menu to choose other array sizes (num-
bers of elements to sort). Try all the algorithms with 100, 1000, 10,000,
100,000, and 500,000 (for the slower algorithms, you might not want
to try them three times for 500,000) elements and random data. For
each algorithm, run it three times and compute the average Number
of comparisons. What does the “E” mean in these numbers? How
do these compare with the predicted values (for Insertion sort and Se-
lection sort)? What values would you expect if the number of bars was
1,000,0007

. Discuss which algorithm you would use in which situations (number of
elements, almost sorted vs. random data, for example).

. Design an algorithm for finding the square root of a positive integer,
rounded down to the nearest integer. Thus, given input N, a positive
integer, you should find a positive integer m such that m? < N, but
(m+1)? > N. Use the binary search idea.

(a) Express the algorithm in pseudocode.

(b) Find a fundamental operation and use big theta notation to ex-
press how long your algorithm takes. Express this as a function
of the positive integer N which is input.



