

Algorithms Sequential Search Algorithm: a well-ordered collection of unambiguous and effectively computable operations, that, when executed, produces a result in a finite amount of time.

Algorithms Sequential Search Algorithm: a well-ordered collection of unambiguous and effectively computable operations, that, when executed, produces a result in a finite amount of time.

Examples:

- computing with floating point numbers
- compressing data
- executing machine code

Algorithms Sequential Search Algorithm: a well-ordered collection of unambiguous and effectively computable operations, that, when executed, produces a result in a finite amount of time.

Examples:

- computing with floating point numbers
- compressing data
- executing machine code

Program: representation of an algorithm Pseudocode: representation of an algorithm Process: execution of an algorithm

Algorithms Sequential Search Art of problem solving Polya's principles applied to algorithms:

- 1. Understand the problem
- 2. Get an idea for a possible algorithmic procedure (to solve it)
- 3. Formulate the algorithm and represent it as a program
- 4. Evaluate the program for correctness and its potential as a tool for solving other problems

Algorithms Sequential Search Art of problem solving Polya's principles applied to algorithms:

- 1. Understand the problem
- 2. Get an idea for a possible algorithmic procedure (to solve it)
- 3. Formulate the algorithm and represent it as a program
- 4. Evaluate the program for correctness and its potential as a tool for solving other problems

Not so easy as $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$.

Algorithms Sequential Search

Examples:

- Magic trick ideas, discover they don't work with some initial cards...
- 3 politicians (no names) A, B, C know each other
 - ◆ 1 always tells the truth
 - ◆ 1 always lies
 - ♦ 1 does some of each
 - ♦ Ask 3 true/false questions
 - choose whichever politician you like for whichever question
 - determine which politician is which

Algorithm design techniques

Algorithms Sequential Search

Techniques:

- Brute force
- Stepwise refinement (top-down)
 - break into smaller and smaller problems
 - if modular (relatively independent) parts, can program in teams — software engineering

Algorithm design techniques

Algorithms Sequential Search Cute problems in textbook.

Example: Step from pier into a boat Hat falls into water. River flows 2.5 miles/hour Go upstream at 4.75 miles/hour After 10 minutes discover hat missing. Turn around to travel downstream. How long before you get to the hat?

Algorithm design techniques

Algorithms Sequential Search Cute problems in textbook.

Example: Step from pier into a boat Hat falls into water. River flows 2.5 miles/hour Go upstream at 4.75 miles/hour After 10 minutes discover hat missing. Turn around to travel downstream. How long before you get to the hat? Answer: 10 minutes — It pays to think.

Algorithms Sequential Search

Pseudocode

- easier to read than a program
- syntax less important
- constructs from many languages work the same

Algorithms Sequential Search

Pseudocode

- easier to read than a program
- syntax less important
- constructs from many languages work the same
 - ♦ if...then...else condition is Boolean
 - while
 - ♦ repeat
 - ♦ for
 - recursion

Algorithms Sequential Search Types — use consistently and clearly Incorrect example: Card \leftarrow Card + n

Algorithms Sequential Search

```
Types — use consistently and clearly
```

```
Incorrect example: Card \leftarrow Card + n
Incorrect example: Suppose Card has the form (s_1, v_1) and 1 \le n \le 6.
```

Must explain the general idea and what variables are used for if not obvious — not what it does, but why, in if...then...else clause for example.

Algorithms Sequential Search Sequential search problem: Input: List of elements, TargetValue Output: success if TargetValue is in List failure if it is not in List

A brute force algorithm.

Algorithms Sequential Search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty) then Output failure

else

TestEntry ← 1st entry in List while (TargetValue ≠ TestEntry and there are entries not considered) do (TestEntry ← next entry in List) if (TargetValue = TestEntry) then Output success else Output failure

Algorithms Sequential Search

- time
- fundamental operation
 - ♦ takes time
 - number of occurrences proportional to everything else that happens

Algorithms Sequential Search Analysis: |List | = nHow many comparisons are necessary in the worst case? A. 1 **B**. *n* − 1 **C**. *n* D. n + 1E. 2n

Vote at m.socrative.com. Room number 415439.

Algorithms Sequential Search Analysis: | List | = nHow many comparisons are necessary in the worst case?

D. n + 1

This is $\Theta(n)$.

Algorithms Sequential Search Analysis: What does $\Theta(n)$ meant? Need to define O(n) too.

 $\begin{array}{l} g \in O(f) \text{ means } \exists c,d \text{ s.t. } g(n) \leq c \cdot f(n) + d \\ g \in \Theta(f) \text{ means } g \in O(f) \text{ and } f \in O(g). \end{array}$

Algorithms Sequential Search

- Analysis:
- $\begin{array}{l} g\in O(f) \text{ means } \exists c,d \text{ s.t. } g(n) \leq c \cdot f(n) + d \\ g\in \Theta(f) \text{ means } g\in O(f) \text{ and } f\in O(g). \end{array}$

Examples:

- $\blacksquare 2n+3 \in \Theta(n)$
- $\blacksquare \ 3\log n \in \Theta(\log n)$
- $\blacksquare 2n + 7\log n \in \Theta(n)$
- $4 \log n + m \in \Theta(\log n)$ if $m \le \log n$
- Can write $\Theta(\log n + m)$ if unsure which term is larger.

Algorithms Sequential Search Analysis: What is $n \log n - 1.4n + 15$?

A. $O(n^2)$

- B. $O(n \log n)$
- $\mathsf{C.}\ \Theta(n\log n)$
- D. all of the above
- E. none of the above

Vote at m.socrative.com. Room number 415439.

Algorithms Sequential Search

```
procedure Search(List, TargetValue):
     if (List empty)
          then Output failure
          else
               TestEntry \leftarrow 1st entry in List
          { precondition: TestEntry is 1st entry in List }
               while (TargetValue \neq TestEntry
                          and there are entries not considered)
                    do (TestEntry \leftarrow next entry in List)
          { loop invariant: TargetValue \neq any entry before TestEntry }
          { postcondition: either TargetValue = TestEntry
               or all entries considered and TargetValue not in List }
               if (TargetValue = TestEntry)
                    then Output success
                     else Output failure
```


Sequential search — correctness

Algorithms Sequential Search

- statements which can be proven to hold (induction)
- at different points in program
- examples: precondition, postcondition, loop invariant
- Proof by induction on number of times through the loop:
- Proof verification: automated?

Assertions

Sequential search — correctness

Algorithms Sequential Search