ﬂ%’ Sorted list
Sortin
e 718115535461 166|75] 77199104 | 111 [123] 124 [150

112345678910 11 12 | 13 | 14 | 15

Find 104. How many comparisons with sequential search?

A 1l
B. 4
C. 11
D. 12

E. 16

Vote at m.socrative.com. Room number 415439,

1/ 44

UNIVERSITY OF to%U:ERN DENMARK S 0 rted I i St

Sorting D .]_ 2

Bin Packing

Can we do better?

c
Z
<
=
=
@
o
)
W
©)
El
=
=
4
o
)
o]
Z
S
>
=
~

Searching
Sorting
Bin Packing

Binary search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty)
then Output failure

else
TestEntry < middle entry in List
if (TargetValue = TestEntry)
then Output success
else if (TargetValue < TestEntry
then Search(left-of-TestEntry, TargetValue)
else Search(right-of-TestEntry, TargetValue)

3/ 44

N %’ Binary search
UNIVERSITY OF ISOUTHERN DENMARK

Recursion

Sorting

Bin Packing . .
m contains reference to itself (subtask)

m termination condition (no infinite loops) — base case

4 | 44

c
74
<
=
=l
&
o
S
W
e
El
=
e
4
5
4
=
Z
S
=
=
~

Searching
Sorting
Bin Packing

Binary search

7

8

15

53

54

61

66

75

77

99

104

111

123

124

150

1

2

3

4

D

10

11

12

13

14

15

TargetValue: 104

Middle index: 8

TestEntry: 75

5/ 44

(@
7Z
<
=
=
2
o
=
)
Q
E
=l
o]
4
o
4
fos]
Zz
s
5>
]
~

Searching
Sorting
Bin Packing

Binary search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty)
then Output failure

else
TestEntry < middle entry in List
if (TargetValue = TestEntry)
then Output success
else if (TargetValue < TestEntry
then Search(left-of-TestEntry, TargetValue)
else Search(right-of-TestEntry, TargetValue)

6 / 44

c
74
<
=
=l
&
o
S
W
e
El
=
e
4
5
4
=
Z
S
=
=
~

Searching
Sorting
Bin Packing

Binary search

7

8

15

53

54

61

66

75

77

99

104

111

123

124

150

1

2

3

4

D

10

11

12

13

14

15

TargetValue: 104

Middle index: 12

TestEntry: 111

7/ 44

(@
7Z
<
=
=
2
o
=
)
Q
E
=l
o]
4
o
4
fos]
Zz
s
5>
]
~

Searching
Sorting
Bin Packing

Binary search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty)
then Output failure

else
TestEntry < middle entry in List
if (TargetValue = TestEntry)
then Output success
else if (TargetValue < TestEntry
then Search(left-of-TestEntry, TargetValue)
else Search(right-of-TestEntry, TargetValue)

8 / 44

c
74
<
=
=l
&
o
S
W
e
El
=
e
4
5
4
=
Z
S
=
=
~

Searching
Sorting
Bin Packing

Binary search

7

8

15

53

54

61

66

75

77

99

104

111

123

124

150

1

2

3

4

D

10

11

12

13

14

15

TargetValue: 104

Middle index: 10

TestEntry: 99

9 / 44

(@
7Z
<
=
=
2
o
=
)
Q
E
=l
o]
4
o
4
fos]
Zz
s
5>
]
~

Searching
Sorting
Bin Packing

Binary search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty)
then Output failure

else
TestEntry < middle entry in List
if (TargetValue = TestEntry)
then Output success
else if (TargetValue < TestEntry
then Search(left-of-TestEntry, TargetValue)
else Search(right-of-TestEntry, TargetValue)

10 / 44

c
74
<
=
=l
&
o
S
W
e
El
=
e
4
5
4
=
Z
S
=
=
~

Searching
Sorting
Bin Packing

Binary search

7

8

15

53

54

61

66

75

77

99

104

111

123

124

150

1

2

3

4

D

10

11

12

13

14

15

TargetValue: 104

Middle index: 11
TestEntry: 104

11 / 44

c
Z
<
=
=
@
o
)
W
©)
El
=
=
4
o
)
o]
Z
S
>
=
~

Searching
Sorting
Bin Packing

Binary search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty)
then Output failure

else
TestEntry < middle entry in List
if (TargetValue = TestEntry)
then Output success
else if (TargetValue < TestEntry
then Search(left-of-TestEntry, TargetValue)
else Search(right-of-TestEntry, TargetValue)

12 / 44

Binary search

(@
Z
<
=
=
5
o
=
(2
Q
E
=
el
z
o
4
=
4
S
=
=
~

Searching

Sorting

Bin Packing 7 8].5 53 54 6]. 66 75 77 99 104 1].1 123 124 150

123456789110 11 12 | 13 | 14 | 15

TargetValue: 104
Result: success

13 / 44

UNIVERSITY OF [SOUTHERN DENMARK

Searching

Sorting
Bin Packing

Binary search

Recursion
m contains reference to itself (subtask)
m termination condition (no infinite loops) — base case
m need:
[0 initialization
0 modification
[0 test for termination

m no more powerful than iteration, but easier to program

Divide-and-Conquer — algorithmic technique
reduce to smaller problem(s)

14 / 44

UNIV[RSITYOth[RN DENMARK Binary SearCh o anaIySiS

Each list has length < % the previous.

Sorting
Sin Packing List sizes: n, |5, | %], [§]) -1

1 comparison per list size.

Worst case: 1+ |logy n| comparisons — ©(log(n))

Can it take this many comparisons?

15 / 44

UNIV[RSITYOth[RN DENMARK Binary SearCh o anaIySiS

Each list has length < % the previous.

Sorting
Sin Packing List sizes: n, |5, | %], [§]) -1

1 comparison per list size.

Worst case: 1+ |logy n| comparisons — ©(log(n))

Can it take this many comparisons?
Yes.

16 / 44

UNIVERSITY OF t%:rm\' DENMARK B i n a ry sea rC h - u Ses

Binary search can be used in many situations.
orting o]
Bin Packing There does not need to be an explicit list.

In an implicit list, one could have functions of the index, such as
F(n) = (n+1)? or f(n) =27

17 / 44

UNIVERSITY OF to%U:ERN DENMARK S 0 rt l n g

Searching

Bin Packing

How do you sort? Think about cards.

UNIVERSITY OF t%:rm\' DENMARK I n Se rt i 0 n S Ort

Searching

procedure Sort(List):
Sin Packing { Input: List is a list }

{ Output: List, with same entries, but in nondecreasing order }

N <2
while (N < length(List) do
Pivot < Nth entry
7 «<— N —1
while (7 > 0 and jth entry > Pivot) do
move jth entry to loc. j + 1

J = J-1
place Pivot in j + 1st loc.
N «— N+1

19 / 44

UNIVERSITY OF t%:rm\' DENMARK I n Se rt i 0 n S Ort

Searching

Bin Packing

What happens if List has 0 or 1 entry?

A. Sort crashes
B. Sort returns the input list unchanged

C. Sort returns something wrong

Vote at m.socrative.com. Room number 415439,

20 / 44

UNIVERSITY OF [SOUTHERN DENMARK

Searching

Insertion Sort

Bin Packing
N: 2
Pivot: 8
7:1

jth entry: 17

17

15

03

18

12

75

21 / 44

UNIVERSITY OF [SOUTHERN DENMARK

Insertion Sort

Searching

Bin Packing
N: 2
Pivot: 8
7: 0

jth entry: none

17

15

03

18

12

75

22 / 44

UNIVERSITY OF t%:rm\' DENMARK I n Se rt i 0 n S Ort

S[171553312275
Bin Packing 1 2 3 4 5 6 7 8
N: 3
Pivot: 15
7 2

jth entry: 17

23 / 44

UNIVERSITY OF t%:rm\' DENMARK I n Se rt i 0 n S Ort

S[171553312275
Bin Packing 1 2 3 4 5 6 7 8
N: 3
Pivot: 15
7 2

jth entry: 17
Continue on board.

24 | 44

UvarRslTvort%:rRNDrNMARK Insertion Sort - CorreCtneSS

Searching

procedure Sort(List):
Sin Packing { Input: List is a list }

{ Output: List, with same entries, but in nondecreasing order }

N 2
while (N < length(List) do
{ loop invariants:
1. entries 1 thru N — 1 in List are in sorted order
2. the same items are in List as originally }
Pivot <— Nth entry
7 «— N —1
while (7 > 0 and jth entry > Pivot) do
move jth entry to loc. j + 1

j = J-1
place Pivot in j + 1st loc.
N «— N+1

25 / 44

UNIVERSITY OF [SOUTHERN DENMARK

Searching

Bin Packing

Insertion Sort — correctness

procedure Sort(List):
{ Input: List is a list }
{ Output: List, with same entries, but in nondecreasing order }
N 2
while (N < length(List) do
Pivot < Nth entry
j < N —1
while (j > 0 and jth entry > Pivot) do
{ loop invariants: 1. no item in loc. 7 + 1
2. entries in locs. j + 2 to N are larger than Pivot
3. entries in locs. 1 to N — 1 stay in same relative order
4. no entries in locs. N + 1 to length(List) are changed }
move jth entry to loc. j + 1

J = J-1
place Pivot in 7 4+ 1st loc.
N «— N+1

26 / 44

UvarRslTvort%:rRNDrNMARK Insertion Sort - anaIySis

eah‘”g Suppose list has n entries.
. .
Bin Packing How many comparisons occur in the best case?

A. 1
B. 2
C. n-1
D. n

E. n+1

Vote at m.socrative.com. Room number 415439.
(What is the best case?)

27 | 44

UvarRslTvort%:rRNDrNMARK Insertion Sort - anaIySis

Searching Worst case number of comparisons:

Bin Packi
oo Outer loop from 2 to n.

28 / 44

UNIVERSITY OF t%:rm\' DENMARK I n Se rt i 0 n S Ort

Searching

procedure Sort(List):
Sin Packing { Input: List is a list }

{ Output: List, with same entries, but in nondecreasing order }

N <2
while (N < length(List) do
Pivot < Nth entry
7 «<— N —1
while (7 > 0 and jth entry > Pivot) do
move jth entry to loc. j + 1

J = J-1
place Pivot in j + 1st loc.
N «— N+1

29 / 44

UvarRslTvort%:rRNDrNMARK Insertion Sort - anaIySis

eahi“g Worst case number of comparisons:

Bin Packi
noene Outer loop from 2 to n.

Inner loop from N — 1 to 1.
Total: Y% (N —1) ="t = 22 ¢ 9(n2),

30 / 44

UvarRslTvort%:rRNDrNMARK Insertion Sort - anaIySis

eahi“g Worst case number of comparisons:

Bin Packi
oo Outer loop from 2 to n.

Inner loop from N — 1 to 1.
Total: Y% (N —1) ="t = 22 ¢ 9(n2),

Can it take this many comparisons?

31 / 44

UvarRslTvort%:rRNDrNMARK Insertion Sort - anaIySis

Searching Worst case number of comparisons:

Bin Packi
oo Outer loop from 2 to n.

Inner loop from N — 1 to 1.
Total: Y% (N —1) ="t = 22 ¢ 9(n2),

Can it take this many comparisons?
Yes.

32 / 44

UvarRslTvort%:rRNDrNMARK Insertion Sort - anaIySis

Searching What list gives this worst case?

Bin Packing

an ordered list

a list in reverse order

A.

B.

C. a random list
D. none of the above
E.

all of the above

Vote at m.socrative.com. Room number 415439,

33 / 44

UvarRslTvort%:rRNDrNMARK Insertion Sort - anaIySis

Searching Worst case number of comparisons:

Bin Packi
noene Outer loop from 2 to n.

Inner loop from N — 1 to 1.

Total: Y% (N —1) ="t = 22 ¢ 9(n2),

Average case number of comparisons:

On average place next Pivot half way down the list.

34 / 44

UvarRslTvort%:rRNDrNMARK Insertion Sort - anaIySis

Searching Worst case number of comparisons:

Bin Packi
noene Outer loop from 2 to n.

Inner loop from N — 1 to 1.
Total: Y% (N —1) ="t = 22 ¢ 9(n2),

Average case number of comparisons:

On average place next Pivot half way down the list.

There exist algorithms which do ©(nlogn) comparisons.

35 / 44

UNIVFRSIWOFEFRNDFNMARK CIaSSicaI bin paCking

Use as few bins as possible:

Searching ltem sizes: n x [1/2, €]
Sorting . .
Bin Packing B|n SIZe:]_

Result by First-Fit algorithm:

36 / 44

UNIVFRSIWOFEFRNDFNMARK CIaSSicaI bin paCking

Use as few bins as possible:

Searching ltem sizes: n x [1/2, €]
Sorting . .
Bin Packing B|n SIZe:]_

Result by Worst-Fit algorithm:

T

37 / 44

UNIVERSITY OF t%:rm\' DENMARK D u a I b I n pa C kl n g

:eatff:h‘“g Given a fixed number of bins, pack as many items as possible.
orting

Bin size: 1
Number of bins: 4
ltem sizes:

= N

oot
=
N

—_
w|°“
Wli— Wi~ ol

11
37 3

“eRlen

Can they all be there?

38 / 44

UNIVERSITY OF t%:rm\' DENMARK D u a I b I n pa C kl n g

SEErE ltem sizes:
Sorting
g L 1 1
47 47 4
5) 1
" 123
5 1
" 12 3
5) 1
" 123
1 1 1
" 3,33

Can they all be there?
First check:

3 9 1

39 / 44

UNIVERSITY OF t%:rm\' DENMARK D u a I b I n pa C kl n g

SEErE ltem sizes:
Sorting
g L 1 1
47 47 4
5 1
" 123
5 1
" 13 3
5 1
" 133
1 1 1
" 33 3

Can they all be there?

What about First-Fit?
An optimal algorithm?

40 / 44

[] []
c Bin packing
UNIVERSITY OF [SOUTHERN DENMARK

Zeatr_‘:h‘“g First-Fit is an on-line algorithm:
orting] .
It handles requests without looking at future requests.

Some problems are on-line in nature. Examples?

Solving bin packing optimally is NP-hard.
Brute force takes a long time.

41 / 44

[] []
c Bin packing
UNIVERSITY OF [SOUTHERN DENMARK

:eatr_‘:h‘“g First-Fit is an on-line algorithm:
orting] .
It handles requests without looking at future requests.

Some problems are on-line in nature. Examples?

Solving bin packing optimally is NP-hard.
Brute force takes a long time.
Approximation algorithms: First-Fit-Decreasing, even better...

Special case: all sizes multiples of %
Fill one bin completely if possible.

42 | 44

UNIVERSITY OF t%:rm\' DENMARK Fi rSt_ Fit for d ua I bi n pa Cki ng

Searching

Sorting procedure First-Fit-Dual(List):
et { Input: List is a list of items with sizes <1 }

{ Output: Number of rejected items }

k < number of bins { all empty }
Count < 0 { number rejected }
get next item x and remove from list
1 1
while (¢ < k and = does not fit in bin 7) do
1 1+1
if (i <k)
then put x in bin ¢
else Count <— Count+1
return(Count)

43 | 44

ﬂ%’ First-Fit for dual bin packing (correct)

Searching
Sorting procedure First-Fit-Dual(List):
et { Input: List is a list of items with sizes <1 }

{ Output: Number of rejected items }

k < number of bins { all empty }
Count < 0 { number rejected }
while there are still items in the list
get next item x and remove from list
1 < 1
while (¢ < k and = does not fit in bin 7) do
1 < 1+1
if (i <k)
then put = in bin ¢
else Count <— Count+1
return(Count)

44 | 44

	Sorted list
	Sorted list
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search — analysis
	Binary search — analysis
	Binary search — uses
	Sorting
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort
	Insertion Sort — correctness
	Insertion Sort — correctness
	Insertion Sort — analysis
	Insertion Sort — analysis
	Insertion Sort
	Insertion Sort — analysis
	Insertion Sort — analysis
	Insertion Sort — analysis
	Insertion Sort — analysis
	Insertion Sort — analysis
	Insertion Sort — analysis
	Classical bin packing
	Classical bin packing
	Dual bin packing
	Dual bin packing
	Dual bin packing
	Bin packing
	Bin packing
	First-Fit for dual bin packing
	First-Fit for dual bin packing (correct)

