Example circuit

What is the output of this circuit?
A. 0
B. 1
C. not defined

Vote at m.socrative.com. Room number 415439.

Example circuit

What is the output of this circuit?
B. 1

Abstraction

Example: Top-down design - cryptographic system

Abstraction

Things at higher levels need not know how things at lower levels function, only how to use them.

Interface, modularity, and modelling give:

- Structure - divide up work
- Independence between modules
(can re-implement without changing the rest)
- Ability to analyze
- Increased innovation, productivity (don't need to re-invent the wheel)

Flip flop

Note that this is stable.
Keeps same output until temporary outside pulse.
Can store a bit.

Flip flop

Note that this is stable.

Flip flop

Note that this is stable.

Note that this is stable.
But two different stable outputs are possible with input $(0,0)$.

Flip flops can be implemented differently. Fig. 1.5, p. 36.
Abstraction: know input/output effect don't care about implementation.

Hexadecimal Notation

To shorten bit strings for humans: | 0000 | 0 |
| :---: | :---: |
| 0001 | 1 |
| 0010 | 2 |
| 0011 | 3 |
| 0100 | 4 |
| 0101 | 5 |
| 0110 | 6 |
| 0111 | 7 |
| 1000 | 8 |
| 1001 | 9 |
| 1010 | A |
| 1011 | B |
| 1100 | C |
| 1101 | D |
| | 1110 |
| E | |
| 1111 | F |

Storage technology

capacitors on chips??? — changes!!!
dynamic memory - need to refresh data, it dissipates non-volatile memory - doesn't lose data if power lost

Memory:
byte - 8 bits

most significant bit
least significant bit

Storage technology

Main memory

- words $=$ cells - fixed size
$8,16,24,32,64$ bits
- words have addresses - count from 0
- can use consecutive words if need more bits for value
- can access words in any order random access memory (RAM)
- get value of word - read or load
- place value of word - write or store

Storage technology

Main memory

- size - power of 2 - addresses fixed length (usually)
- $2^{10}=1024$ bytes $=1$ kilobyte -1 KB
- 4096 bytes $=4 \mathrm{~KB}$
- $2^{20}=1,048,576$ bytes $=1$ megabyte -1 MB
- $2^{30}=1,073,741,824$ bytes $=1$ gigabyte -1 GB
- $2^{40}=1,099,511,627,776$ bytes $=1$ terabyte - 1 TB
- Some people use these terms for powers of 10 .

Storage technology

Mass (secondary) storage

- disk, CD's, magnetic tapes
- flash memory (SSD - solid-state disks, SD - secure digital, SDHC - high capacity)
- CD \rightarrow DVD \rightarrow Blu-ray similar technologies (optical) - more capacity
- on-line vs. off-line - human intervention
- mechanical, slower (except flash memory)
- disk
- often several in layers - space for heads
- read/write heads above tracks
- cylinder - tracks on top of each other

Storage technology

Mass (secondary) storage

- disk
- sector - arc of a track
- files stored as physical records $=$ sectors vs. logical records (fields, keys)
- each contains same number of bits (512 or 1024 bits, for example)
- within a group of tracks, each contains same number of sectors - having different groups, with fewer sectors toward middle is zone bit recording
- locations of tracks and sectors marked magnetically during formatting

Storage technology

Secondary storage

- flash memory
- cameras, cell phones, etc.
- not mechanical
- not dynamic
- hard to erase or rewrite a few locations often
- intensive writing reduces lifespan

Text

Text — characters (symbols) — standards

- ASCII - appendix A
- EBCDIC
- BCD
- Unicode - implemented by different character encodings
- UTF-8 - one byte for ASCII, up to 4 bytes
- UCS-2 - older, 16 bit codes
- UTF-16 - extends UCS-2, two 16-bit code units

Integers

Integers

- Base $10-234=2 \cdot 10^{2}+3 \cdot 10^{1}+4 \cdot 10^{0}=\sum_{i=0}^{2} d_{i} \cdot 10^{i}$ Generally $d_{k-1} \ldots d_{1} d_{0}=\sum_{i=0}^{k-1} d_{i} \cdot 10^{i}$.
- Base $2-11101100=$ $1 \cdot 2^{7}+1 \cdot 2^{6}+1 \cdot 2^{5}+0 \cdot 2^{4}+1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+0 \cdot 2^{0}=\sum_{i=0}^{7} b_{i} \cdot 2^{i}$ Generally $b_{k-1} \ldots b_{1} b_{0}=\sum_{i=0}^{k-1} b_{i} \cdot 2^{i}$.

Integers

Algorithm to find binary representation:
procedure convert(value):
\{ Input: integer value \}
\{ Output: char string str \}

```
str := \lambda
```

remainder := value $\bmod 2$
str := remainder || str
quotient := value div 2
while quotient $\neq 0$
begin
remainder $:=$ quotient $\bmod 2$
str := remainder \| str
quotient $:=$ quotient div 2
end
return(str)

Numbers

- Adding binary - unsigned integers can get extra bit
- fractions: $\quad 101.011=5 \frac{3}{8}$

Two's complement

Two's complement

- sign bit - high order bit
- $+x,-x$ - same low order bits to first 1 complement after that
- addition - same as before ($2+(-5)$)
- subtraction - How?

Two's complement

- sign bit - high order bit
- $+x,-x$ - same low order bits to first 1 complement after that
- addition - same as before $(2+(-5))$
- subtraction - create negative and add
- Overflow - $3+7=$?

Two's complement

- sign bit — high order bit
- $+x,-x$ - same low order bits to first 1 complement after that
- addition - same as before $(2+(-5))$
- subtraction - create negative and add
- Overflow $-3+7=1010=-6$ 2,147,483,646 OK without overflow in 32-bit overflow bit can be checked

Excess notation

Excess notation

Floating point

Textbook doesn't use implicit leading bit (you should)

exponent - excess notation, bias 4

111	3
110	2
101	1
100	0
011	-1
010	-2
001	-3
000	-4

Floating point

Textbook doesn't use implicit leading bit (you should)

mantissa - implicit leading bit

It is really 5 bits, with the first bit $1.1100 \rightarrow 1.1100$
sign — negative
exponent - $011 \rightarrow-1$
$-\left(1.11 \cdot 2^{-1}\right)=-\frac{7}{8}$

Floating point

$$
1 \frac{1}{8}
$$

mantissa - $1.001 \rightarrow 0010$
exponent - $0 \rightarrow 100$
result - 01000010

How do we represent $2 \frac{5}{8}$? (Note: can't in book.)
A. 01010101
B. 00101010
C. 01011101
D. 00111010

Vote at m.socrative.com. Room number 415439.

Floating point

$$
1 \frac{1}{8}
$$

mantissa - $1.001 \rightarrow 0010$
exponent - $0 \rightarrow 100$
result - 01000010

How do we represent $2 \frac{5}{8}$? (Note: can't in book.)
[A.] 01010101

Floating point

$$
\begin{gathered}
4 \frac{5}{8}=100.101 \\
\text { exponent }=2 \rightarrow 110
\end{gathered}
$$

result — 01100010

Last bit is truncated. $4 \frac{5}{8}=4 \frac{1}{2}$?
$\left(4 \frac{1}{2}+\frac{1}{8}\right)+\frac{1}{8}=4 \frac{1}{2}$?
$4 \frac{1}{2}+\left(\frac{1}{8}+\frac{1}{8}\right)=4 \frac{3}{4}$?

Truncation errors and reducing them

- numerical analysis

Floating point

What about $\frac{1}{3}$ and $\frac{1}{10}$.

A. $\frac{1}{3}$ and $\frac{1}{10}$ both require truncation.
B. $\frac{1}{3}$ requires truncation, but not $\frac{1}{10}$
C. $\frac{1}{10}$ requires truncation, but not $\frac{1}{3}$.
D. Neither $\frac{1}{3}$ nor $\frac{1}{10}$ require truncation.

Vote at m.socrative.com. Room number 415439.

Floating point

$$
\text { What about } \frac{1}{3} \text { and } \frac{1}{10} \text {. }
$$

[A.] $\frac{1}{3}$ and $\frac{1}{10}$ both require truncation.

Images

Bit map - scanner, video camera, etc.

- image consists of dots - pixels
- 0 - white; 1 - black
- colors - use more bits -
- red, green, blue components
- 3 bytex per pixel
- example: 1024×1024 pixels
- megapixels (how many millions of pixels)
- need to compress

Images

Vector techniques - fonts for printers

- scalable to arbitrary sizes
- image $=$ lines and curves
- poorer photographic quality

Sound

Sounds waves

- sample amplitude at regular intervals - 16 bits -8000/sec - long distance telephone -more for music
- Musical Instrument Digital Interface - MIDI -musical synthesizers, keyboards, etc.
-records directions for producing sounds (instead of sounds) -what instrument, how long

