Sequential search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty)
then Output failure

else
TestEntry := 1st entry in List
while (TargetValue # TestEntry
and there are entries not considered)

(TestEntry := next entry in List)

if (TargetValue = TestEntry)
then Output success
else Output failure

Sequential search

Analysis:

> time
» fundamental operation

> takes time
» number of occurrences proportional to everything else that
happens

Sequential search

Analysis:
| List | = n

How many comparisons are necessary in the worst case?

A1l
n—1
n
n+1
2n

mU O

Vote at m.socrative.com. Room number 415439.

Sequential search

Analysis:
| List| = n
How many comparisons are necessary in the worst case?

D. n+1

This is ©(n).

Sequential search

Analysis:
What does ©(n) meant?
Need to define O(n) too.

g € O(f) means 3¢, d s.t. g(n) < c- f(n)+d
g € O(f) means g € O(f) and f € O(g).

Sequential search

Analysis:
g € O(f) means 3¢, d s.t. g(n) < c- f(n)+d
g € ©(f) means g € O(f) and f € O(g).

Examples:

v

2n+3 € 0O(n)

3logn € ©(log n)

2n+ Tlogn € ©(n)

4logn+ m € O(logn) if m<logn

v

v

v

v

Can write ©(log n + m) if unsure which term is larger.

Sequential search

Analysis:
What is nlogn — 1.4n + 157

0O(n?)

O(nlog n)
©(nlog n)

all of the above

moUnw>»

none of the above

Vote at m.socrative.com. Room number 415439.

Sequential search — correctness

procedure Search(List, TargetValue):
if (List empty)
then Output failure
else
TestEntry := 1st entry in List
{ precondition: TestEntry is 1st entry in List }
while (TargetValue # TestEntry
and there are entries not considered)
(TestEntry := next entry in List)
{ loop invariant: TargetValue # any entry before TestEntry }
{ postcondition: either TargetValue = TestEntry
or all entries considered and TargetValue not in List }
if (TargetValue = TestEntry)
then Output success
else Output failure

Sequential search — correctness

Assertions

» statements which can be proven to hold (induction)
» at different points in program

» examples: precondition, postcondition, loop invariant

Proof by induction on number of times through the loop:

Proof verification: automated?

Sequential search — correctness

Searching a sorted list

8(15|53 54|61 |66|75|77 |99

104

111

123

124

150

2/3|4|5|6|7]8|9]10

11

12

13

14

15

Find 104. How many comparisons with sequential search?

4
11
12
16

moUow>»

Vote at m.socrative.com. Room number 415439.

Sorted list

D. 12

Can we do better?

Binary search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty)
then Output failure

else
TestEntry = middle entry in List
if (TargetValue = TestEntry)
then Output success
else if (TargetValue < TestEntry
then Search(left-of-TestEntry, TargetValue)
else Search(right-of-TestEntry, TargetValue)

Binary search

Recursion

» contains reference to itself (subtask)

» termination condition (no infinite loops) — base case

Binary search

53

54

61

66

75

77

99

104

111

123

124

150

10

11

12

13

14

15

TargetValue: 104

Middle index: 8

TestEntry: 75

Binary search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty)
then Output failure

else
TestEntry := middle entry in List
if (TargetValue = TestEntry)
then Output success
else if (TargetValue < TestEntry
then Search(left-of-TestEntry, TargetValue)
else Search(right-of-TestEntry, TargetValue)

Binary search

53

54

61

66

75

77

99

104

111

123

124

150

10

11

12

13

14

15

TargetValue: 104

Middle index: 12
TestEntry: 111

Binary search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty)
then Output failure

else
TestEntry := middle entry in List
if (TargetValue = TestEntry)
then Output success
else if (TargetValue < TestEntry
then Search(left-of-TestEntry, TargetValue)
else Search(right-of-TestEntry, TargetValue)

Binary search

53

54

61

66

75

77

99

104

111

123

124

150

10

11

12

13

14

15

TargetValue: 104

Middle index: 10

TestEntry: 99

Binary search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty)
then Output failure

else
TestEntry := middle entry in List
if (TargetValue = TestEntry)
then Output success
else if (TargetValue < TestEntry
then Search(left-of-TestEntry, TargetValue)
else Search(right-of-TestEntry, TargetValue)

Binary search

53

54

61

66

75

77

99

104

111

123

124

150

10

11

12

13

14

15

TargetValue: 104

Middle index: 11
TestEntry: 104

Binary search

procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }

if (List empty)
then Output failure

else
TestEntry := middle entry in List
if (TargetValue = TestEntry)
then Output success
else if (TargetValue < TestEntry
then Search(left-of-TestEntry, TargetValue)
else Search(right-of-TestEntry, TargetValue)

Binary search

53

54

61

66

75

7

99

104

111

123

124

150

10

11

12

13

14

15

TargetValue: 104

Result: success

Binary search

Recursion

» contains reference to itself (subtask)

» termination condition (no infinite loops) — base case
> need:

> initialization

» modification

> test for termination

» no more powerful than iteration, but easier to program
Divide-and-Conquer — algorithmic technique

reduce to smaller problem(s)

Binary search — analysis

Each list has length < % the previous.
List sizes: n, [5], [7], lg) -1
1 comparison per list size.

Worst case: 1+ |log, n| comparisons — O(log(n))

Can it take this many comparisons?

Binary search — analysis

Each list has length < % the previous.

List sizes: n, [5], [7], lg) -1

1 comparison per list size.

Worst case: 1+ |log, n| comparisons — ©(log(n))

Can it take this many comparisons?

Yes.

Binary search — uses

Binary search can be used in many situations.

There does not need to be an explicit list.

In an implicit list, one could have functions of the index, such as
f(n) = (n+1)?or f(n) =2".

Sorting

How do you sort? Think about cards.

Insertion Sort

procedure Sort(List):
{ Input: List is a list }
{ Output: List, with same entries, but in nondecreasing order }

while (N < length(List)

Pivot := Nth entry

j = N-1

while (j > 0 and jth entry > Pivot)

begin
move jth entry to loc. j + 1
jo=j-1

end

place Pivot in j + 1st loc.

N = N+1

end

