DMT71 Project — Safe Programming Practices — Lukasz Bruun

Safe Programming Practices

Introduction

In recent years as the Internet has become increasingly popular, the number of threats on the
Internet has grown dramatically. Many of the threats such as viruses and trojans often exploit
already existing programs on the victims computer which are faulty in some way or the other,
making it possible for the attacker to install his malicious program on victims computer which could
take complete control over the victims computer without him knowing it. A consequence of this
development has been that its necessary to check for software updates at least on a weekly basics,
which is not something the average user would necessary do for software which doesn't check for
updates itself. It would clearly be easier to educate the developers to write more secure programs
than to educate all the users to keep up to date with all the latest security issues, trends and buzz-
words. There are some common pitfalls for developers, which they may not know about or simply
have overlooked due to other factors such as bugs or deadlines. I have taken a look at the common
pitfalls and potential dangers which could occur when developing software and will go through

some of most popular types of code exploitation and look at methods of prevention.

Unsafe code

All programs (with very few exceptions) take input and most of these directly from the user or user
files. If the program does not validate the input throughly, malformed data could pass all the checks
and cause the program to behave different than what was intended, changing the flow of the
program.

Another possibility for passing malformed data is that it constructed in such a way that it overflows
a buffer and overwrites unrelated data. This unrelated data could be an address pointer the CPU will
be executing instructions at in the future, making it possible to insert malicious code in the buffer
that is being overflowed and by making the address pointer point to the beginning of the buffer, this
would yield control over the CPU when it executes the instructions the address pointer points to.
Lets take a closer look at this two scenarios, what the consequences would be in the worst case and

what could be done to prevent it.

Page 1 of 4



DMT71 Project — Safe Programming Practices — Lukasz Bruun

Changing program flow

Even though changing the flow of a program does not seem as critical and serious as taking over
CPU execution, the consequences for a company can be just as fatal. Consider a website on the
Internet, made in some sort of scripting language, which takes parameters are appended to the end

of the URL, like “http://www.mywebsite.com/section.php?s=about me.dat”. In this example the s=

parameter tells the website which file it should display content from. One can imagine that if this is
not properly checked or the web server is not configured correctly, this could lead to reading any file
on the server. In a danish newspaper they reported on the front page about a dating site on the
Internet where you could access private sections of a users profile, which you would normally only
be allowed if the owner of the profile granted you access. The newspaper published private pictures
of users from the website in the newspaper, thus giving the website a bad reputation.

Such programming errors are easy to track within the source code directly by passing the
malformed URL directly and letting program print debug information.

It is difficult to prevent such errors as programs are often very complex and human error does occur.
One way prevent such errors, a group of developers could review the code and try to come up with
malformed data which could possibly compromise the the system. Its often hard for developers to
spot their own errors, therefor it is important that the code gets reviewed by a group which was not
involved with programming the system and thus increasing the chances of finding bugs.

In general one should just be handle invalid input just as carefully as one handles valid input.

Taking over execution

Even though getting access to private data by malformed data is sometimes all you want as a hacker,
it is far more interesting if you could get access to a system and even more interesting as a superuser,
thus giving complete control over the system. Like mentioned previously one could take control
over the CPU by overflowing a buffer and overwriting an instruction pointer, in reality this buffer is
the stack and the address pointer you overwrite is the return address on the stack frame. This is of
course only possible in such programming languages as C/C++/Pascal/etc. where you can access
any memory address not protected by the operating system directly.

Thanks to the current computer architecture the stack grows upwards, which means that all stack

Page 2 of 4


http://www.mywebsite.com/section.php?s=about_me.txt

DMT71 Project — Safe Programming Practices — Lukasz Bruun

frame data is below the user data on the stack, which means that if you can overflow a buffer, you
can overwrite anything in the stack frame, including the return address for a function. The most
common way to overflow a buffer is by taking advantage of how ASCII strings are represented. A
string is terminated by the ASCII value 0, often called NULL'. I the C programming language there
are string functions in the standard C library which do not terminate until they reach a NULL. For
instance strcpy (string copy), which copies a string from one buffer to another, it will copy bytes
from the source to the destination until it reaches a NULL. If this source buffer is user input and the
destination buffer is a local buffer in a function with a fixed size, then this buffer will reside on the
stack and thus a malformed string provided by the user can be longer than the buffer and thereby
overflow it. If the string is carefully constructed you could overwrite the return address on the stack
with the address where the buffer starts and have code inside the buffer.

Currently neither Linux or Windows distinguishes between code and data segments, so its possible
to execute instructions in a data segment, afact that makes buffer overflows possible.

The code you put inside the buffer would in Unix systems be a system call to execute a command
shell such as bash. If the program you tried to overflow was running in supervisor mode and this
program then would execute a shell, you would be running a shell in supervisor (root) mode and
thus having complete control over a system. Many popular software packages such as wu_ftp, bind
and apache just to name few have been exposed to these kind of buffer overflow attacks.

Spotting such potential overflows in a program just by going through the source code is not always
easy as it requires some knowledge regarding the computer architecture you are programming on
and potential dangers of programming language your are using. It seems to be a somewhat “black
magic” for average programmers how exploits are actually made and documentation on how make
them are often written by hackers who hide behind a nickname which makes the whole thing seem
like an underground hacker thing. I however, believe that every programmer should be taught how to
write the most common type of exploits and get some hands-on experience, because if they can
write an exploit they can also prevent one.

There has been done some work to make it much harder to make buffer overflows in some operating
systems such Linux, for which there are patches available for the 2.6.x kernel which randomizes the
stack pointer on every execution of a process. One of the already difficult parts of making an exploit

work is that the return address you are overwriting is an absolute address, so you need to know the

1 NULL can also refer to the memory address 0

Page 3 of 4



DMT71 Project — Safe Programming Practices — Lukasz Bruun

exact address of where the buffer you are overflowing starts. This can be done relatively easy if the
stack pointer is static, you can brute force it starting from where the stack pointer is pointing at the
beginning of a process and work your way up through memory. You can also do some tricks such a
adding a lot of NOPs (no operation) in beginning of your overflow, making it more likely that you
will find a address from brute forcing, as there is a larger memory area which is a valid entry point
for the exploit. However with a randomized stack pointer you do not have an starting address you
can brute force from nor can you compare results from several runs. It is likely that we will see this
kind of feature in other operating systems as well as separation of code and data, making it
impossible to execute code from a data segment.

As a developer you need to keep up with whats currently happening security wise in the

programming languages you work with and follow guidelines for writing safe code.

Conclusion
After taking a closer look at some of the common programming pitfalls, it is more clear how
important it has become to write safe code as there are people who might try to exploit your code,

be it for fun or for profit.

References
"Exploiting Format String Vulnerabilities" - scut / team teso
"Smashing The Stack For Fun And Profit" - Alephe One

http://doc.bughunter.net

Page 4 of 4



	Safe Programming Practices

