

RFID Security

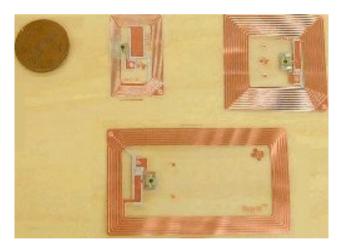
April 10, 2006

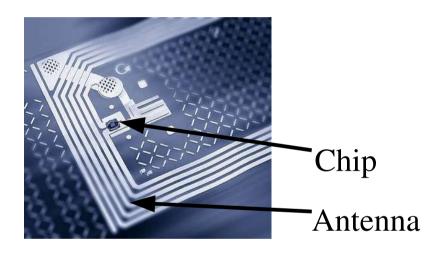
Martin Dam Pedersen

Department of Mathematics and Computer Science University Of Southern Denmark

Outline

- What is RFID
- RFID usage
- Security threats
- Threat examples
- Protection Schemes for basic and advanced tags
- The future
- Literature


Plenty of information


What is RFID

- Radio-Frequency IDentification
 - RFID System
 - Tags
 - Readers
 - Backend servers

RFID System

Tag (transponder)

- Small chip and antenna
- Unique serial number
- inexpensive(7.5cents)
- Cryptography is possible in more advanced(Expensive) tags.
 - Symmetric-key
 - Public-key
 - Hashing

RFID System

- Tag types
 - passive(HF, UHF)
 - powered by reader and transmits a response
 - Very small(Chip 0.15mm×0.15mm, Antenna size of a stamp)
 - Read distances ranging from 2mm 5m
 - semi-passive, active(small battery)
 - Self powered
 - active tags are fully self powered
 - semi-passive only powers it's circuit
 - size of a coin
 - larger ranges (>10 meters)

RFID Systems

- Reader (transceivers)
 - Read/Write data on tag
 - Communicates with back end system

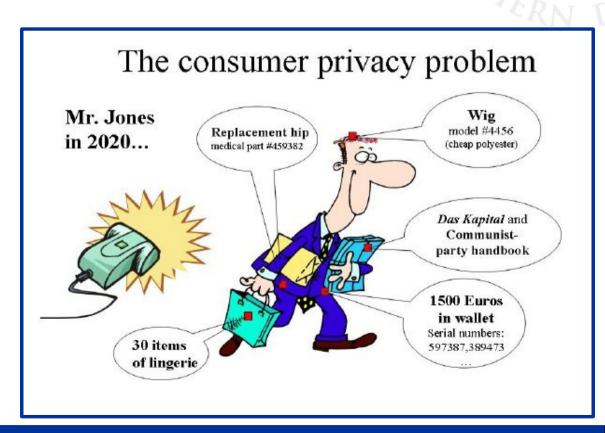
RFID System

- Backend server
 - Stores information about tags
 - can perform necessary data computations
 - links tag-ids to more rich data

RFID usage

- Replacement of bar codes. EPC(Electronic Product Code)
 tags combined with Auto-ID gives unique
 serial numbers to items.
- Animal tracking
- Payment systems
 - Toll-payment at Storebæltsbroen (BroBizz)
 - Stockholm road pricing
- Anti theft
- Anti forgery

RFID usage



- Access control
- Supply chain
 - Inventory Control
 - Logistics
 - Retail shops
- Human implants
- Libraries
- Etc.....

Security threats

- Eavesdropping
- Cloning
- Spoofing
- Tracking
- DOS

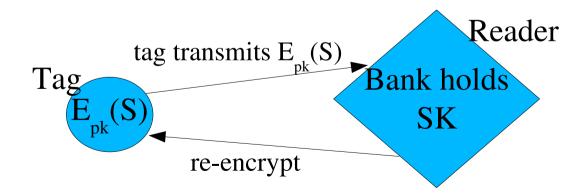
Threat examples

- Someone checking whats in your bag
- Cloning access control badges gives access to unauthorized personal in buildings/cars.
- Harvesting id's from store shelfs makes it possible to calculate how much is sold from the store.
- Tracking a persons movement, violating the concept of "location privacy"

Protection Schemes for basic tags

Killing/Sleeping

- using PIN
- Special device incorporated in shopping bag.
- If killed it's not usable in "smart" home devices.


Collection of id's

- Tag is sending a different id at each reader query
- Reader stores all id's, and can therefore identify the tag.
- To avoid harvesting id's, slow down responses when queried too quickly
- Readers can refresh id's

Protection Schemes for basic tags

- Encrypting id, public/private key
 - ID on tag encrypted with the banks public key
 - Bank can decrypt with private key
 - to avoid tracking, re-encrypt periodically by El Gamal which gives a different cipher text.

Protection Schemes for advanced tags

Hash Lock

- Locked tag only transmits metaID.
- Unlocked can do all operations.
- Locking mechanism.
 - 1) Reader R selects a nonce and computes metaID=hash(key).
 - 2) R writes metaID to tag T.
 - 3) T enters locked state.
 - 4) R stores the pair (metaID, key).

Protection Schemes for advanced tags

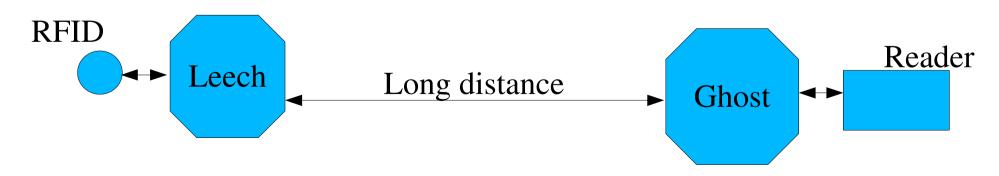
Hash Lock

- unlocking mechanism.
 - 1) Reader R queries Tag T for its metaID.
 - 2) R looks up (metaID,key).
 - 3) R sends key to T.
 - 4) if (hash(key) == metaID), T unlocks itself
- Spoofing attack is possible, but can be detected.

University of Southern Denmark

- Symmetric key tags
 - $\cdot C = E_k(M)$
 - Challenge-response protocol
 - 1) Tag identifies itself by transmitting T
 - 2) Reader generates a nonce N and transmits it to the tag
 - 3) Tag computes and returns $C = E_k(N)$
 - 4) Reader checks that C indeed is equal to $E_k(N)$.

INIVERSITY OF SOUTHERN DENMARK


- Symmetric key tags
 - If implemented in the right way, almost impossible to break.
 - In practice resource constraints leads to bad implementations.

- The Digital Signature Transponder(DST) from TI_(texas Instruments)
 - Theft protection in cars. Used in SpeedPassTM(payment device to ExxonMobil petrol stations)
 - Performs a challenge-response protocol.
 - $C = E_k(R)$, where R is 40 bits, and C is 24 bits, secret key k is 40 bits.
 - The short key is vulnerable to brute force attack.
 - TI did not publish the encryption algorithm E, "security by obscurity".
 - Cracked in 2004 !!

- Man-in-the-middle-attack
 - Almost any security application of RFID, involves a presumption of physical proximity.
 - Can bypass any cryptographic protocol
 - Phone equipped with a GPS receiver could sign outgoing messages.

The future

- More and more RFID tags in new applications
- D.O.S. becomes a larger problem
- Cheaper tags makes it possible to build in more advanced cryptography for the same money
- Probably don't replace bar codes completely because of the cost(5 cent tag on a 29 cent chocolate bar).

Literature

- Ari Juels, RSA Laboratories: "RFID Security and Privacy: A Research Survey"
- RSAlabs page on rfid: http://www.rsasecurity.com/rsalabs/node.asp?id=2115
- Wikipedia: http://en.wikipedia.org/wiki/Rfid
- Stephen August Weis: "Security and Privacy in Radio-Frequency Identification Devices"
- http://www.rfidjournal.com/