Department of Mathematics and Computer Science January 30, 2012
University of Southern Denmark, Odense KSL

Exam Project in Compiler Construction, part 2

Kim Skak Larsen
Spring 2012

I ntroduction

In this note, we describe one part of the exam project that brisolved in connection
with the project "A compiler for an imperative programmiranbuage”, Spring 2012.
Itis important to read through the entire project desaviptiefore starting the work on
the project; also the sections on requirements and how tdarurour solution.

Deadline

Friday, February 24, 2012, at 12:00 (noon).

A scanner and parser in C

Among other things, you must turn in a program which must bigtewrin the program-
ming language C. It must be the c99 ANSI standard as specifi¢iteboptions below.
This excludes C++, in particular. Your programs should bapited using

gcc -std=c99 -Wall -Wextra -pedantic

You must construct a scanner using the took¥ and a parser using the tool ®N.
Using BISoON, you must build an abstract syntax tree. Finally, you musteva pret-
typrinter, which should be used to document that the scgnpirsing, and building of
the syntax tree have been carried out correctly. Here, &ypréatter is a program which
prints the abstract syntax tree with appropriately chosdentation and/or sufficiently
many parenthesis to make it possible, preferably easyyify ¥iee abstract syntax tree.

The language you will work with is called l(NGRY, and it is partially defined by the
grammar in Fig. 1 and 2. The figure has been split in two for ¢gypphical reasons
only.

The start symbol igbody), and all terminal symbols are written in bold face.

: (head (body) (tail)

: funcid ((pardecllist)) : (type)
:endid

-id

| int

| bool

| array of (type

| record of { (var_decllist) }

(pardecllist) : (var.declLlist)

(var_decllist)

(var_type)
(body)
(decllist)

(declaratiof

| e
(var_decllist) , (var_type)
| (var.type)
id : (type)
: (decllist) (statementist)
: (decllist) (declaration
| e
: typeid = (type) ;
| (function)
| var (vardecllist) ;

(statementist) : (statemenjt

(statement

(optlength

(optelse

(variable

| (statementist) (statemerit

: return (expressiop;

| write (expressioh;

| allocate (variablé (optlength ;

| (variablé = (expressioh;

| if (expressiopthen (statemerit(opt.else
| while (expressiopndo (statemerjt

| { (statementist) }

: of length (expressioh

|

. else (statement

| e

sid

| (variable [(expressiop]
| (variable . id

Figure 1: Grammar for HNGRY, part 1.

(expressioh : (expressiohop (expressioh
| (term)
(term) : (variable
\ id ((actlist))
| ({expressiop)
| ! (term)
|| (expressioh|
| num
| true
| fal
\ uII
(actlist) : (explist)
E
(explist) . (expressioh
| (explist) , (expressioh

Figure 2: Grammar for HNGRY, part 2.

There is more information about the language below. It is phthe assignment to

decide which of these could most conveniently be dealt withése phases and which
should be postponed until the phases weed, symbol, typ&icige@and code genera-
tion.

The semantics of the various constructions are mostly ofsyibased on usual com-
puter scientific tradition. The few which are not are als@dssed below.

Further requirementsfor Hungry programs

The list below is intentionally incomplete. Partly becanseall information is relevant

right now and partly because some of the decisions of thisreahould be made as a

part of answering the project as a whole. Some informatioelévant for this part of

the project, but most have been included to give a sufficieptéssion of the language.
e id are usual identifiers.

e num are usual integers.

e A function name is repeated after teed which terminates the function defini-
tion. Thus, the twads afterfunc andend must be identical.

e Atafunction call, parameters which are simple types aregxhas values where-
as composite types (arrays and records) are passed bynedere

e All invocations of a function must result in the executioregfeturn statement.

e write prints the value ofexpressiof, which can be limited to being an integer
or a boolean, followed by a return. Booleans are printed axtimstants, i.e.,
either the four lower-case letter “true” or the five lowesedetters “false”.

o allocate (variable of length (expressiohallocates space in memory. This space
is of size (expressioh for an array with the namévariable, while allocate
(variablé allocates space for a record @friablé’s type.

o A function definition introduces a new (nested) scope.

o { (statementist) } is a “compound statement”, which can be used for group-
ing statements such that more than one statement can betekéclawhile-
construction, for example.

e opcanbet, — *, /[, ==1=, >, <, >=, <=, &&, | |

e | (expressiopn| can denote the size of an array or the absolute value of an
integer expression.

e Array indices start with.
e null is the standard value for a reference variable (array aratadgc

e # is used as the beginning of a one-line comment. The commaeaatded by
newline.

e (* is used as the beginning of a multi-line comment ahdloses the comment.
As the name indicates, such a comments may run over sevegal hough it
may also be closed on the same line it is started. These cotaro@m also be
nested.

The Abstract Syntax Tree

Note that thet i ny expr essi ons example from the home page gives you the ba-
sic structure of the various files which are involved. Howebe sure to understand
and rethink all parts of this little example. Not everythinghis little example is ap-
propriate for a real compiler as the one you will be makingpanticular, you should
structure your AST using a number of typedefs roughly cwesding to the number
of different left-hand sides in your grammar.

Turningin
Electronically, you must turn in

o a FLEX file.

e a Bisonfile.

e a C-program, which uses the files produced by the definities fibove to im-
plement a prettyprinter of INGRY-programs from an AST, build via thei8oN
definition file.

e a makefile, connecting all of the above.

Additionally, you must hand in a report with program listinof all of the above, along
with brief descriptions of the most important choices madieé process; among these,
grammar rewriting or other actions taken to remove conflicteu must include a
sufficient and documented testing. See also the standantdteatgnts.

Requirements

All material should be turned in on paper (referred taresreport) and electronically
(a few exceptions are mentioned below). In addition, silig is an exam project,
there are a number of important rules that will be detailddvae

Exam Rules

This is an exam project. Cooperation beyond what is explipigrmitted will be con-
sidered cheating and will be treated as such. You have a dlep your notes private
and protect your files against reading and copying by otHgogh parties involved in
a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficienetior each assignment
and you are strongly encouraged to plan your work such thatwibfinish some days
before the deadline.

Assignments that are turned in after the deadline will noabeepted. Downtime on
the system or the printers will not automatically result mextension; not even if it
is the last hours before the deadline. Neither will own otdren’s illness without a
statement from your physician, etc.

Solutions

All specific requirements posed in the project descriptiarstof course be fulfilled.

The Report

The report should in the best possible manner account faertiee solution. Possible
omissions, known errors, etc. should be described in thertel is often a good idea
to do this in a separate section instead of mixing it in with tést of the report.

You must include the page at the end of this document as theege of your report
or attached in some way such that it is easily located. Thertepust be dated and
signed by the members of the group.

For programs turned in as part of your solution, you must tale of the following:

The report must contain (possibly as an appendix) a primtiiige entire program. This
printing must be identical to the program that is turned ecabnically. All the pages
of your program print-out must contain your group numbere @y of obtaining this
is to use

az2ps -Pd3 --line-nunbers=1 --tabsize=3 -g
--header="Printed by group NN' file.c

whereNNis your group number.

The report must contain a description of the most importadtralevant decisions that
have been made in the process of answering the assignmergaswhs must be given
where this is appropriate.

You must also explain how the program has been tested. Testmg&s and test runs
can and should be included to the extent that this is meauifigfally large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chasemes and indentation
and tested sufficiently. The numbers of characters (inndhlanks and 8 times the
number of tabs) on a program line is limited to 79. This is imi@ot for various tools

used for inspecting, evaluating, and viewing your prograamsl it is important for the

print-out of parts of your own program that you will see at éxam.

Programs will often be tested automatically. This makescitegnely important to
respect all interface-like demands, e.g., input/outprrnfds.

Programs that are turned in must compile and run on IMADA<hi@es. You are
very welcome to develop your programs at home, but it is yesponsibility. This in-

cludes technical problems at home, lack of access to rdleadinvare, moving data to
IMADA via e-mail, USB keys, etc. and converting to the cotriezmat, e.g., between
Windows and Linux.

TurningIn

The report should be turned in at IMADA's secretaries’ offitbe office may be closed
for very short periods of time. If, for some unexpected reatiee office must be closed
for longer periods of time close to the deadline, an annowmece will be made outside
the office, giving instructions as to where you turn in yoypae.

For the first parts of the projects, you only need to turn in@y of the report. For the
final part, you must turn in two copies. For all parts, you ntust in all the material
electronically.

Programs, test files, etc. should be turned in electronicdtur report should also be
turned in electronically as a pdf file. As opposed to the papesion of your report,
this version does not necessarily have to include prograntisest files, since they are
turned in separately. Also, signatures and the front paga the end of this document
are not required in the pdf file.

The procedure for turning in electronically can be foundthia project home page:
http://ww.imada. sdu. dk/ ~ksl arsen/ CC Pr oj ekt /

Avoid Danish (and other non-ascii) letters (such as ae, gajmlyour directory and
file names (Blackboard does not handle this well).

You may upload your files individually or collect your filegdrone (archive) file before
uploading. If you choose to do the latter, you must use ettlaeror zi p for this.

Department of Mathematics and Computer Science Spring 2012
University of Southern Denmark, Odense KSL

CC, Spring 2012
Exam Project, part 2

Group

Date

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

This report contains atotalof pages.

Please writevery clearly. Under Logins, give your IMADA followed by your stedt (student.sdu.dk) login.

