
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

January 30, 2012
KSL

Exam Project in Compiler Construction, part 2
Kim Skak Larsen

Spring 2012

Introduction

In this note, we describe one part of the exam project that must be solved in connection
with the project ”A compiler for an imperative programming language”, Spring 2012.
It is important to read through the entire project description before starting the work on
the project; also the sections on requirements and how to turn in your solution.

Deadline

Friday, February 24, 2012, at 12:00 (noon).

A scanner and parser in C

Among other things, you must turn in a program which must be written in the program-
ming language C. It must be the c99 ANSI standard as specified by the options below.
This excludes C++, in particular. Your programs should be compiled using

gcc -std=c99 -Wall -Wextra -pedantic

You must construct a scanner using the tool FLEX and a parser using the tool BISON.
Using BISON, you must build an abstract syntax tree. Finally, you must write a pret-
typrinter, which should be used to document that the scanning, parsing, and building of
the syntax tree have been carried out correctly. Here, a prettyprinter is a program which
prints the abstract syntax tree with appropriately chosen indentation and/or sufficiently
many parenthesis to make it possible, preferably easy, to verify the abstract syntax tree.

The language you will work with is called HUNGRY, and it is partially defined by the
grammar in Fig. 1 and 2. The figure has been split in two for typographical reasons
only.

The start symbol is〈body〉, and all terminal symbols are written in bold face.

1

〈function〉 : 〈head〉 〈body〉 〈tail〉
〈head〉 : func id (〈par decl list〉) : 〈type〉
〈tail〉 : end id
〈type〉 : id

| int
| bool
| array of 〈type〉
| record of { 〈var decl list〉 }

〈par decl list〉 : 〈var decl list〉
| ε

〈var decl list〉 : 〈var decl list〉 , 〈var type〉
| 〈var type〉

〈var type〉 : id : 〈type〉
〈body〉 : 〈decl list〉 〈statementlist〉
〈decl list〉 : 〈decl list〉 〈declaration〉

| ε
〈declaration〉 : type id = 〈type〉 ;

| 〈function〉
| var 〈var decl list〉 ;

〈statementlist〉 : 〈statement〉
| 〈statementlist〉 〈statement〉

〈statement〉 : return 〈expression〉 ;
| write 〈expression〉 ;
| allocate 〈variable〉 〈opt length〉 ;
| 〈variable〉 = 〈expression〉 ;
| if 〈expression〉 then 〈statement〉 〈opt else〉
| while 〈expression〉 do 〈statement〉
| { 〈statementlist〉 }

〈opt length〉 : of length 〈expression〉
| ε

〈opt else〉 : else 〈statement〉
| ε

〈variable〉 : id
| 〈variable〉 [〈expression〉]
| 〈variable〉 . id

Figure 1: Grammar for HUNGRY, part 1.

2

〈expression〉 : 〈expression〉 op 〈expression〉
| 〈term〉

〈term〉 : 〈variable〉
| id (〈act list〉)
| (〈expression〉)
| ! 〈term〉
| | 〈expression〉 |
| num
| true
| false
| null

〈act list〉 : 〈exp list〉
| ε

〈exp list〉 : 〈expression〉
| 〈exp list〉 , 〈expression〉

Figure 2: Grammar for HUNGRY, part 2.

There is more information about the language below. It is part of the assignment to
decide which of these could most conveniently be dealt with in these phases and which
should be postponed until the phases weed, symbol, type checking, and code genera-
tion.

The semantics of the various constructions are mostly obvious, based on usual com-
puter scientific tradition. The few which are not are also discussed below.

Further requirements for Hungry programs

The list below is intentionally incomplete. Partly becausenot all information is relevant
right now and partly because some of the decisions of this nature should be made as a
part of answering the project as a whole. Some information isrelevant for this part of
the project, but most have been included to give a sufficient impression of the language.

• id are usual identifiers.

• num are usual integers.

• A function name is repeated after theend which terminates the function defini-
tion. Thus, the twoids afterfunc andend must be identical.

• At a function call, parameters which are simple types are passed as values where-
as composite types (arrays and records) are passed by reference.

• All invocations of a function must result in the execution ofa return statement.

3

• write prints the value of〈expression〉, which can be limited to being an integer
or a boolean, followed by a return. Booleans are printed as the constants, i.e.,
either the four lower-case letter “true” or the five lower-case letters “false”.

• allocate 〈variable〉 of length 〈expression〉 allocates space in memory. This space
is of size 〈expression〉 for an array with the name〈variable〉, while allocate
〈variable〉 allocates space for a record of〈variable〉’s type.

• A function definition introduces a new (nested) scope.

• { 〈statementlist〉 } is a “compound statement”, which can be used for group-
ing statements such that more than one statement can be executed in awhile-
construction, for example.

• op can be+, −, *, /, ==, !=, >, <, >=, <=, &&, | |.

• | 〈expression〉 | can denote the size of an array or the absolute value of an
integer expression.

• Array indices start with0.

• null is the standard value for a reference variable (array and record).

• # is used as the beginning of a one-line comment. The comment isended by
newline.

• (* is used as the beginning of a multi-line comment and*) closes the comment.
As the name indicates, such a comments may run over several lines, though it
may also be closed on the same line it is started. These comments can also be
nested.

The Abstract Syntax Tree

Note that thetiny expressions example from the home page gives you the ba-
sic structure of the various files which are involved. However, be sure to understand
and rethink all parts of this little example. Not everythingin this little example is ap-
propriate for a real compiler as the one you will be making. Inparticular, you should
structure your AST using a number of typedefs roughly corresponding to the number
of different left-hand sides in your grammar.

Turning in

Electronically, you must turn in

• a FLEX file.

• a BISON file.

4

• a C-program, which uses the files produced by the definition files above to im-
plement a prettyprinter of HUNGRY-programs from an AST, build via the BISON

definition file.

• a makefile, connecting all of the above.

Additionally, you must hand in a report with program listings of all of the above, along
with brief descriptions of the most important choices made in the process; among these,
grammar rewriting or other actions taken to remove conflicts. You must include a
sufficient and documented testing. See also the standard requirements.

Requirements

All material should be turned in on paper (referred to asthe report) and electronically
(a few exceptions are mentioned below). In addition, since this is an exam project,
there are a number of important rules that will be detailed below.

Exam Rules

This is an exam project. Cooperation beyond what is explicitly permitted will be con-
sidered cheating and will be treated as such. You have a duty to keep your notes private
and protect your files against reading and copying by others.Both parties involved in
a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficient time for each assignment
and you are strongly encouraged to plan your work such that you will finish some days
before the deadline.

Assignments that are turned in after the deadline will not beaccepted. Downtime on
the system or the printers will not automatically result in an extension; not even if it
is the last hours before the deadline. Neither will own or children’s illness without a
statement from your physician, etc.

Solutions

All specific requirements posed in the project description must of course be fulfilled.

The Report

The report should in the best possible manner account for theentire solution. Possible
omissions, known errors, etc. should be described in the report. It is often a good idea
to do this in a separate section instead of mixing it in with the rest of the report.

You must include the page at the end of this document as the front page of your report
or attached in some way such that it is easily located. The report must be dated and
signed by the members of the group.

5

For programs turned in as part of your solution, you must takecare of the following:

The report must contain (possibly as an appendix) a printingof the entire program. This
printing must be identical to the program that is turned in electronically. All the pages
of your program print-out must contain your group number. One way of obtaining this
is to use

a2ps -Pd3 --line-numbers=1 --tabsize=3 -g
--header="Printed by group NN" file.c

whereNN is your group number.

The report must contain a description of the most important and relevant decisions that
have been made in the process of answering the assignment andreasons must be given
where this is appropriate.

You must also explain how the program has been tested. Test examples and test runs
can and should be included to the extent that this is meaningful (really large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chosen names and indentation
and tested sufficiently. The numbers of characters (including blanks and 8 times the
number of tabs) on a program line is limited to 79. This is important for various tools
used for inspecting, evaluating, and viewing your programs, and it is important for the
print-out of parts of your own program that you will see at theexam.

Programs will often be tested automatically. This makes it extremely important to
respect all interface-like demands, e.g., input/output formats.

Programs that are turned in must compile and run on IMADA’s machines. You are
very welcome to develop your programs at home, but it is your responsibility. This in-
cludes technical problems at home, lack of access to relevant software, moving data to
IMADA via e-mail, USB keys, etc. and converting to the correct format, e.g., between
Windows and Linux.

Turning In

The report should be turned in at IMADA’s secretaries’ office. The office may be closed
for very short periods of time. If, for some unexpected reason, the office must be closed
for longer periods of time close to the deadline, an announcement will be made outside
the office, giving instructions as to where you turn in your report.

For the first parts of the projects, you only need to turn in onecopy of the report. For the
final part, you must turn in two copies. For all parts, you mustturn in all the material
electronically.

6

Programs, test files, etc. should be turned in electronically. Your report should also be
turned in electronically as a pdf file. As opposed to the paperversion of your report,
this version does not necessarily have to include programs and test files, since they are
turned in separately. Also, signatures and the front page from the end of this document
are not required in the pdf file.

The procedure for turning in electronically can be found viathe project home page:

http://www.imada.sdu.dk/∼kslarsen/CC/Projekt/

Avoid Danish (and other non-ascii) letters (such as æ, ø, andå) in your directory and
file names (Blackboard does not handle this well).

You may upload your files individually or collect your files into one (archive) file before
uploading. If you choose to do the latter, you must use eithertar or zip for this.

7

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

Spring 2012
KSL

CC, Spring 2012
Exam Project, part 2

Group

Date

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

This report contains a total of pages.
Please writevery clearly. Under Logins, give your IMADA followed by your student (student.sdu.dk) login.

