
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

February 15, 2012
KSL

Exam Project in Compiler Construction, part 3
Kim Skak Larsen

Spring 2012

Introduction

In this note, we describe one part of the exam project that must be solved in connection
with the project ”A compiler for an imperative programming language”, Spring 2012.
It is important to read through the entire project description before starting the work on
the project; also the sections on requirements and how to turn in your solution.

Deadline

Friday, March 16, 2012, at 12:00 (noon).

Correct HUNGRY Programs

Among other things, you must turn in a program which must be written in the program-
ming language C. It must be the c99 ANSI standard as specified by the options below.
This excludes C++, in particular. Your programs should be compiled using

gcc -std=c99 -Wall -Wextra -pedantic -m32

The primary new tasks of this part of the project are to construct a weeder and a type
checker. These phases must be combined with the symbol tableand the scanner/parser
from the previous parts of the project to form a complete front-end of a HUNGRY

compiler. To test the front-end, a new pretty printer must beconstructed which prints
a representation of the abstract syntax tree where all expressions (and subexpressions)
are annotated with their types. This must be the output for correct HUNGRY programs.
For incorrect HUNGRY programs, the compiler must print an error message, informing
the programmer of at least one error in the program along withits line number and a
reasonable explanation of what the error is.

1

Weeder

There should be a separate weeder phase between the parsing and the type checking
phases. As a minimum, the following must be handled:

• For function definitions, it must be verified that names afterthe keyswordsfunc
andend are identical.

• It must be verified that all function calls will result in the execution of areturn
statement. It is a part of the assignment to detail this requirement and describe
the implemented rules in the report.

Type checking

This part can structurally be organized through the following three (abstract) traversals
of the abstract syntax tree. You can consider whether or not some traversal could
conveniently be merged with one of the other traversals.

1. Collection of variable, type, and function declarations.

2. Calculation of the types of all expressions and subexpressions. One possibil-
ity is to allocate space in the nodes of the abstract syntax tree for saving this
information.

3. Verification of correct usage of all variables, types, andfunctions.

Prettyprinter

A prettyprinter is here a program which prints the abstract syntax tree with sufficient
indentation and/or parantheses so that the structure of thetree can be verified.

Additionally, the type of all expressions and subexpressions must be indicated in the
print-out. Find a way to do this without making the printed programs completely un-
readable.

Testing

A sufficient collection of programs must be tested such that it is verified, via the pret-
typrinter, that all type information is computed correctly. Additionally, any error mes-
sage should be provoked by some test program.

Turning in

Electronically, you must turn in

2

• All relevant files from the previous parts of the project.

• C-files for the weeder (presumablyweed.c with header file).

• C-files for the type checker (presumablytypecheck.c with header file).

• a C-program which, using the files above, implements a type annotating pret-
typrinter for HUNGRY programs.

• a makefile, connecting all of the above.

Additionally, you must hand in a report with program listings of all of the above, along
with brief descriptions of the most important choices made in the process of creating
the weeder and type checker. You must include a sufficient anddocumented testing.
See also the standard requirements.

Requirements

All material should be turned in on paper (referred to asthe report) and electronically
(a few exceptions are mentioned below). In addition, since this is an exam project,
there are a number of important rules that will be detailed below.

Exam Rules

This is an exam project. Cooperation beyond what is explicitly permitted will be con-
sidered cheating and will be treated as such. You have a duty to keep your notes private
and protect your files against reading and copying by others.Both parties involved in
a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficient time for each assignment
and you are strongly encouraged to plan your work such that you will finish some days
before the deadline.

Assignments that are turned in after the deadline will not beaccepted. Downtime on
the system or the printers will not automatically result in an extension; not even if it
is the last hours before the deadline. Neither will own or children’s illness without a
statement from your physician, etc.

Solutions

All specific requirements posed in the project description must of course be fulfilled.

3

The Report

The report should in the best possible manner account for theentire solution. Possible
omissions, known errors, etc. should be described in the report. It is often a good idea
to do this in a separate section instead of mixing it in with the rest of the report.

You must include the page at the end of this document as the front page of your report
or attached in some way such that it is easily located. The report must be dated and
signed by the members of the group.

For programs turned in as part of your solution, you must takecare of the following:

The report must contain (possibly as an appendix) a printingof the entire program. This
printing must be identical to the program that is turned in electronically. All the pages
of your program print-out must contain your group number. One way of obtaining this
is to use

a2ps -Pd3 --line-numbers=1 --tabsize=4 -g
--header="Printed by group NN" file.c

whereNN is your group number.

The report must contain a description of the most important and relevant decisions that
have been made in the process of answering the assignment andreasons must be given
where this is appropriate.

You must also explain how the program has been tested. Test examples and test runs
can and should be included to the extent that this is meaningful (really large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chosen names and indentation
and tested sufficiently. The numbers of characters (including blanks and 4 times the
number of tabs) on a program line is limited to 79. This is important for various tools
used for inspecting, evaluating, and viewing your programs, and it is important for the
print-out of parts of your own program that you will see at theexam.

Programs will often be tested automatically. This makes it extremely important to
respect all interface-like demands, e.g., input/output formats.

Programs that are turned in must compile and run on IMADA’s machines. You are
very welcome to develop your programs at home, but it is your responsibility. This in-
cludes technical problems at home, lack of access to relevant software, moving data to
IMADA via e-mail, USB keys, etc. and converting to the correct format, e.g., between
Windows and Linux.

4

Turning In

The report should be turned in at IMADA’s secretaries’ office. The office may be closed
for very short periods of time. If, for some unexpected reason, the office must be closed
for longer periods of time close to the deadline, an announcement will be made outside
the office, giving instructions as to where you turn in your report.

For the first parts of the projects, you only need to turn in onecopy of the report. For the
final part, you must turn in two copies. For all parts, you mustturn in all the material
electronically.

Programs, test files, etc. should be turned in electronically. Your report should also be
turned in electronically as a pdf file. As opposed to the paperversion of your report,
this version does not necessarily have to include programs and test files, since they are
turned in separately. Also, signatures and the front page from the end of this document
are not required in the pdf file.

The procedure for turning in electronically can be found viathe project home page:

http://www.imada.sdu.dk/∼kslarsen/CC/Projekt/

Avoid Danish (and other non-ascii) letters (such as æ, ø, andå) in your directory and
file names (Blackboard does not handle this well).

You may upload your files individually or collect your files into one (archive) file before
uploading. If you choose to do the latter, you must use eithertar or zip for this.

5

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

Spring 2012
KSL

CC, Spring 2012
Exam Project, part 3

Group

Date

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

This report contains a total of pages.
Please writevery clearly. Under Logins, give your IMADA followed by your student (student.sdu.dk) login.

