Department of Mathematics and Computer Science February 15, 2012
University of Southern Denmark, Odense KSL

Exam Project in Compiler Construction, part 3

Kim Skak Larsen
Spring 2012

I ntroduction

In this note, we describe one part of the exam project that brisolved in connection
with the project "A compiler for an imperative programmiranbuage”, Spring 2012.
Itis important to read through the entire project desasiptiefore starting the work on
the project; also the sections on requirements and how tdrurour solution.

Deadline

Friday, March 16, 2012, at 12:00 (noon).

Correct HUNGRY Programs

Among other things, you must turn in a program which must bigtevrin the program-
ming language C. It must be the c99 ANSI standard as specifi¢iteboptions below.
This excludes C++, in particular. Your programs should bapited using

gcc -std=c99 -Wall -Wextra -pedantic -nB2

The primary new tasks of this part of the project are to canesta weeder and a type
checker. These phases must be combined with the symbolaabithe scanner/parser
from the previous parts of the project to form a complete themd of a HUNGRY
compiler. To test the front-end, a new pretty printer mustdestructed which prints
a representation of the abstract syntax tree where all ssiores (and subexpressions)
are annotated with their types. This must be the output fmecoHUNGRY programs.
For incorrect HUNGRY programs, the compiler must print an error message, infagmi
the programmer of at least one error in the program along igtline number and a
reasonable explanation of what the error is.

Weeder

There should be a separate weeder phase between the parditigeaype checking
phases. As a minimum, the following must be handled:

e For function definitions, it must be verified that names atterkeysword$unc
andend are identical.

¢ |t must be verified that all function calls will result in thgesution of areturn
statement. It is a part of the assignment to detail this requént and describe
the implemented rules in the report.

Type checking

This part can structurally be organized through the follgypthree (abstract) traversals
of the abstract syntax tree. You can consider whether or oitestraversal could
conveniently be merged with one of the other traversals.

1. Collection of variable, type, and function declarations

2. Calculation of the types of all expressions and subegmrs. One possibil-
ity is to allocate space in the nodes of the abstract synt for saving this
information.

3. Verification of correct usage of all variables, types, antttions.

Prettyprinter

A prettyprinter is here a program which prints the abstrgiotax tree with sufficient
indentation and/or parantheses so that the structure afegbean be verified.

Additionally, the type of all expressions and subexprassimust be indicated in the
print-out. Find a way to do this without making the printedgrams completely un-
readable.

Testing

A sulfficient collection of programs must be tested such thiatverified, via the pret-
typrinter, that all type information is computed correcthdditionally, any error mes-
sage should be provoked by some test program.

Turningin

Electronically, you must turn in

All relevant files from the previous parts of the project.

C-files for the weeder (presumahbbged. ¢ with header file).

e C-files for the type checker (presumablypecheck. ¢ with header file).

a C-program which, using the files above, implements a typetating pret-
typrinter for HUNGRY programs.

e a makefile, connecting all of the above.

Additionally, you must hand in a report with program listingf all of the above, along
with brief descriptions of the most important choices madéhe process of creating
the weeder and type checker. You must include a sufficientdaecdmented testing.
See also the standard requirements.

Requirements

All material should be turned in on paper (referred tahesreport) and electronically
(a few exceptions are mentioned below). In addition, siii€ is an exam project,
there are a number of important rules that will be detailddvae

Exam Rules

This is an exam project. Cooperation beyond what is explipgrmitted will be con-
sidered cheating and will be treated as such. You have adlsep your notes private
and protect your files against reading and copying by otH&ogh parties involved in
a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficienetior each assignment
and you are strongly encouraged to plan your work such thatwibfinish some days
before the deadline.

Assignments that are turned in after the deadline will noabeepted. Downtime on
the system or the printers will not automatically result mextension; not even if it
is the last hours before the deadline. Neither will own ofdrkein’s illness without a
statement from your physician, etc.

Solutions

All specific requirements posed in the project descriptiarshof course be fulfilled.

The Report

The report should in the best possible manner account fagritiee solution. Possible
omissions, known errors, etc. should be described in tharteb is often a good idea
to do this in a separate section instead of mixing it in with tést of the report.

You must include the page at the end of this document as theege of your report
or attached in some way such that it is easily located. Thertepust be dated and
signed by the members of the group.

For programs turned in as part of your solution, you must take of the following:

The report must contain (possibly as an appendix) a primtiiige entire program. This
printing must be identical to the program that is turned actbnically. All the pages
of your program print-out must contain your group numbere @y of obtaining this
is to use

az2ps -Pd3 --line-nunbers=1 --tabsize=4 -g
--header="Printed by group NN' file.c

whereNN s your group number.

The report must contain a description of the most importadtralevant decisions that
have been made in the process of answering the assignmergaswhs must be given
where this is appropriate.

You must also explain how the program has been tested. Test&s and test runs
can and should be included to the extent that this is meauiigfally large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chasemes and indentation
and tested sufficiently. The numbers of characters (inomdianks and 4 times the
number of tabs) on a program line is limited to 79. This is im@ot for various tools

used for inspecting, evaluating, and viewing your prograamsl it is important for the

print-out of parts of your own program that you will see at &xam.

Programs will often be tested automatically. This makescitegnely important to
respect all interface-like demands, e.g., input/outprrnfds.

Programs that are turned in must compile and run on IMADAIges. You are
very welcome to develop your programs at home, but it is yesponsibility. This in-

cludes technical problems at home, lack of access to releadinvare, moving data to
IMADA via e-mail, USB keys, etc. and converting to the cotrfezmat, e.g., between
Windows and Linux.

Turning In

The report should be turned in at IMADA's secretaries’ offitae office may be closed
for very short periods of time. If, for some unexpected reatite office must be closed
for longer periods of time close to the deadline, an annowmecg will be made outside
the office, giving instructions as to where you turn in yoyrae.

For the first parts of the projects, you only need to turn inamgy of the report. For the
final part, you must turn in two copies. For all parts, you ntush in all the material
electronically.

Programs, test files, etc. should be turned in electronicdtur report should also be
turned in electronically as a pdf file. As opposed to the papesion of your report,
this version does not necessarily have to include progranti$est files, since they are
turned in separately. Also, signatures and the front paga the end of this document
are not required in the pdf file.

The procedure for turning in electronically can be foundthiproject home page:
http://ww. i mada. sdu. dk/ ~ksl ar sen/ CCJ Pr oj ekt /

Avoid Danish (and other non-ascii) letters (such as ae, g your directory and
file names (Blackboard does not handle this well).

You may upload your files individually or collect your filegdrone (archive) file before
uploading. If you choose to do the latter, you must use ettlaeror zi p for this.

Department of Mathematics and Computer Science Spring 2012
University of Southern Denmark, Odense KSL

CC, Spring 2012
Exam Project, part 3

Group

Date

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

This report contains atotalof pages.

Please writevery clearly. Under Logins, give your IMADA followed by your stedt (student.sdu.dk) login.

