Department of Mathematics and Computer Science February 26, 2012
University of Southern Denmark, Odense KSL

Exam Project in Compiler Construction, part 4

Kim Skak Larsen
Spring 2012

I ntroduction

In this note, we describe one part of the exam project that brisolved in connection
with the project "A compiler for an imperative programmiranguage”, Spring 2012.
Itis important to read through the entire project desaviptiefore starting the work on
the project; also the sections on requirements and how marurour solution.

Deadline

Compiler | Wednesday, May 16, 2012 at 12:00 (nogn)
Report Thursday, May 24, 2012 at 12:00 (noon)

A Hungry Compiler

Among other things, you must turn in a program which must bievrin the program-
ming language C. It must be the c99 ANSI standard as specifitiaeboptions below.
This excludes C++, in particular. Your programs should baited using

gcc -std=c99 -Wall -Wextra -pedantic -nB2

The primary new task of this part of the project is code getimraincluding optimiza-

tion. These phases must then be combined with the front-esdlped in part 3 of
the project to form a complete compiler. The report mustttafiahe issues raised in
the four project parts. The requirements for the compilel i@port consist of all the
requirements from the four project parts.

The report must be structured logically as one document, it.eannot just be the
reports from the various project parts with a “rubber bandiuad. A report draft is
available via the course home page.

Note that the deadlines do not imply that you can write a featiery report in one
week.

1The draft is in Danish since this would be what almost all sttslevould want. Please contact the
lecturer if you have a translation problem.

Code Generation

Code generation must be handled in at least two subphasta flollowing, these two
phases are described, but more can be added in between the two

The first phase generates abstract assembler code, whikthlm®entium code, but
which could be somewhat or significantly different. Somesjlaly differences could

be that jump addresses are pointers to the linked list gtohi@ (abstract) instructions.
Another possibility is that temporary variables are usedieiad of explicit references
to either stack or registers.

In the last phase, you must generate Intel Pentium Assembiell style from the
more or less abstract assembler code. You are allowed tpruset f statements in
your assembler code, as it has been done in the examples couitse home page. You
are not allowed to use other functions from the C-librarjheitt explicit permission.

In between the two phases, you may place a number of optimizphases. If you
have used temporary variables in your abstract assemlder tieen such a phase could
determine which temporary variables are placed in registad which are placed on
the stack.

Independent of the choice of abstract assembler code, lpEepaptimization is an
obvious possibility for an optimization phase.

Execution Requirements

The makefile you turn in must be able to generate the comptatgiter as an exe-
cutable file using only your flex, bison, and C source files. Uistrof course be able
to run on the department’s computers, i.e., the ones in tineinal room. Example
computers aréogon(digit). i mada. sdu. dk, where(digit) can be any of the digits
1,...,9. These are the computers you can connect to using ssh fraideuADA.

The compiler (the executable) must be callaghgry (all lower case) and it must
(even though it can be generated by the makefile) alreadyrerated in the directory
you are turning in.

If you write hungry < fil enane. hun on command line and the UWNGRY pro-
gramfi | ename. hun is correct, then your compiler must produce Intel Pentium As
sembler code AT&T style for the program. This must be sengttdout . If the
HUNGRY program contains errors, absolutely nothing should betewritost dout .
Instead, an error message must be writtesittder r . In either case, every time a new
phase is started, the name of the phase should be writstnder r .

The compiler (rai n in the C program) must retuthif the compilation is successful
and another integer otherwiskif you do not have a reason to choose something else).

If, after a successful compilation, the output from your @ier has been placed on
afilefil ename. s and you writegcc fi | enane. s on command line, then a file
a. out must be generated which executes with the correct resutte@department’s

computers. This requires that you strictly respect theireqents fowr i t e which
must write its argument followed by a newline without anyrax@paces or other char-
acters tost dout . The only output that is permitted @t dout is what is written
usingwr i t e. If you would like to write nice error messages in case of dirb@ error,
you must write them tet derr.

The generated assembler code must refiyire., as the last code you generatepust
be placed in %eax, followed by code to return to the operatyrsgem according to the
conventions for this. There is one exception from this: ifusmtime, you catch one of
the errors described under the heading “Runtime Safetydwemnents”, the assembler
program should return the value indicated there.

Testing

The first code generation phase should be tested throughrac@du printing the more
or less abstract assembler code to a file such that you cdn treat the code produced
is what you expect. This work can to a large extent be reuséukitast phase of the
code generation.

As the final testing, a sufficient collection ofUNGRY programs must be tested, and
you must verify that the correct result is produced. Thisusthdve supplemented by
well chosen internal tests of critical functionalities.

In the directory/ hone/ | MADA/ cour ses/ cc, you will find a checking program,
check. py. It is highly recommended that in addition to your own care@sting,
you also test using this program, since this is the programtwiill be used by us in
connection with an automatic testing of all compilers. la treginning of this check
program, you can see how to use it.

We emphasize that testing using oclgeck. py is not considered a sufficient test of
the compiler.

Extensions

A minimal core language, BINGRY, has been chosen as the starting point. The pur-
pose of only including the most necessary constructionkéndanguage definition is

to leave room for an individualization of the project by gigiyou the choice of which
extensions to make. Thus, you are expected to add more ésatuyour compiler.

In that context, there are the following requirements:

e You should not start work on extensions before having cotaglthe basic work
of implementing a compiler for the core language.

e It really should be extensions. You are not allowed to motfifycore language.
In particular, your compiler should be able to compile adl thst programs.

e Any new facility should be motivated, described, and docui@e.

Below, we list some possibilities, but you are very welcomentroduce your own

ideas. Some of the extensions are (much) harder than otiers. goal should be

to implement at least (part of) one extension from each othihee collections: lan-

guage extensions, runtime safety improvements, and addamdensions. From the
collection with advanced extensions, the peep-hole opétitn is a task which is both
interesting and can be limited to be quite manageable. Eumtre, it has the ad-
vantage that you can start with a simple version with fewguatt and then gradually
include more.

If you spend time considering extensions, but do not manag®mplete the imple-
mentation, give a short account of your considerations &edstatus of your work
implementing it.

L anguage Extensions

e Unary minus (42 instead of) — 42, for instance).

e Multi-dimensional arrays (this is different from arraysasfays; you must have a
layout such that for instance the address of A[i,j,k] candmapguted directly and
not via three pointer/offset operations as one would néyata using A[i][jl[k]).

e Array and record constants.
¢ Increment/decrement and assignment short-hands.
e Forloops.

e Print of strings; possibly extended to strings as a type waifious string opera-
tors.

e An input facility (herescanf from the C library may be used).
e Coercion from one type to another.
e More flexible assignment compatibility (including transéé parameters).

e Possibility for structural assignment of records and afayaking a copy instead
of a reference to the same object).

e Extended loop control. Allow for the use of the keywormtinue andbreak
in while-constructions. The keywomntinue starts the execution of the nearest
enclosing while-loop from the beginning wherda®ak terminates the execu-
tion of the nearest enclosing while-loop. As an examplefdhewing code adds
positive numbers from an array A, stopping when a zero is emeved:

i=—-1;

sum =0;
whilei+1 < |A] {
i=zi+1;

if Ali] == 0 then break;
if Ali] < 0then continue;
sum =sum + A[i];

}

Runtime Safety | mprovements

e Run-time check for array index values (return value 2).
e Run-time check for division by zero (return value 3).

e Run-time check for positive argument for array allocaticetrn value 4).

Run-time check for use of uninitialized variables, inchglindexing and deref-
erencing of null pointers (return value 5).

Run-time check for out-of-memory (return value 6).

Advanced Extensions

e Peep-hole optimization.

Introduction of af r ee command to free previously allocated array and record
space. For this to be at all useful, your system should ofssalHow reuse of
this space.

Full (automatic) garbage collection of (unused) arraysracdrds.

Advanced register allocation.

Reuse of stack space for local variables and spilled temipgraot used simul-
taneously.

e Adding class definitions, class hierarchy, and objectseddahguage.

In addition to these three collections of extensions, wieach group should make at
least one from each, there are many further possibilitiesirtstance, the following:

Extra Extensions

e Constant folding.

o Algebraic simplification.

Turning In

Electronically, you must turn in

o all relevant files from this and previous parts of the project
e a makefile, connecting all of the above.

e The compilethungr y as an executable file.

In addition, you must turn in two identical print-outs of yoreport and code files.
There should be a reasonable and documented test of allptee also the standard
requirements.

Evaluation

In order to pass, the compiler must work on a reasonable sabsBUNGRY. A com-
piler which does not generate working code for even the ssiadnd simplest BiN-
GRY programs will not be accepted.

Additionally, your compiler will be judged on structure, roectness, elegance, and
extent.

The report should not be a textbook. Thus, in general you rasyrae what all partic-
ipants in the course know. However, do keep the censor in bt is nice with a
brief description of the setting in each section as a refergmint for your own work.

Most importantly, the report should contain descriptiod documentation for the most
important choices made. A report is not good just becausddnig! Think carefully
about what to include and try to make it “to the point”, but du Bxclude interesting
choices and considerations.

Requirements

All material should be turned in on paper (referred tahesreport) and electronically
(a few exceptions are mentioned below). In addition, sifig is an exam project,
there are a number of important rules that will be detailddvae

Exam Rules

This is an exam project. Cooperation beyond what is explipgrmitted will be con-
sidered cheating and will be treated as such. You have adligelp your notes private
and protect your files against reading and copying by otH&ogh parties involved in
a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficienetior each assignment
and you are strongly encouraged to plan your work such thatwibfinish some days
before the deadline.

Assignments that are turned in after the deadline will noabeepted. Downtime on
the system or the printers will not automatically result mextension; not even if it
is the last hours before the deadline. Neither will own ofdrkein’s illness without a
statement from your physician, etc.

Solutions

All specific requirements posed in the project descriptiarshof course be fulfilled.

The Report

The report should in the best possible manner account fagritiee solution. Possible
omissions, known errors, etc. should be described in thertel is often a good idea
to do this in a separate section instead of mixing it in with st of the report.

You must include the page at the end of this document as thegege of your report
or attached in some way such that it is easily located. Thertepust be dated and
signed by the members of the group.

For programs turned in as part of your solution, you must take of the following:

The report must contain (possibly as an appendix) a primtfitige entire program. This
printing must be identical to the program that is turned ectabnically. All the pages
of your program print-out must contain your group numbere @y of obtaining this
is to use (all on one line)

az2ps -Pd3 --line-nunbers=1 --tabsize=4 -g
--header="Printed by group NN' file.c

whereNN is your group number.

The report must contain a description of the most importadtralevant decisions that
have been made in the process of answering the assignmergaswhs must be given
where this is appropriate.

You must also explain how the program has been tested. Test&s and test runs
can and should be included to the extent that this is meaunlifigfally large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chas@mes and indentation
and tested sufficiently. The numbers of characters (innthlanks and 4 times the
number of tabs) on a program line is limited to 79. This is imi@ot for various tools

used for inspecting, evaluating, and viewing your prograamsl it is important for the
print-out of parts of your own program that you will see at &xam.

Programs will often be tested automatically. This makescitegnely important to
respect all interface-like demands, e.g., input/outpunfds.

Programs that are turned in must compile and run on IMADA<Inir@es. You are
very welcome to develop your programs at home, but it is yesponsibility. This in-

cludes technical problems at home, lack of access to rdleadinvare, moving data to
IMADA via e-mail, USB keys, etc. and converting to the cotriegmat, e.g., between
Windows and Linux.

Turning In

The report should be turned in at IMADA's secretaries’ offitle office may be closed
for very short periods of time. If, for some unexpected reatiee office must be closed
for longer periods of time close to the deadline, an annamect will be made outside
the office, giving instructions as to where you turn in yoypas.

For the first parts of the projects, you only need to turn in@ry of the report. For the
final part, you must turn in two copies. For all parts, you nust in all the material
electronically.

Programs, test files, etc. should be turned in electrogic¥tiur report should also be
turned in electronically as a pdf file. As opposed to the papesion of your report,
this version does not necessarily have to include progranti$est files, since they are
turned in separately. Also, signatures and the front pagge the end of this document
are not required in the pdf file.

The procedure for turning in electronically can be foundthieproject home page:
http://ww. i mada. sdu. dk/ ~ksl ar sen/ CC/ Pr oj ekt /

Avoid Danish (and other non-ascii) letters (such as ze, gajmyour directory and
file names (Blackboard does not handle this well).

You may upload your files individually or collect your filegdrone (archive) file before
uploading. If you choose to do the latter, you must use ettlaeror zi p for this.

Department of Mathematics and Computer Science Spring 2012
University of Southern Denmark, Odense KSL

CC, Spring 2012
Exam Project, part 4

Group

Date

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

This report contains atotalof pages.

Please writevery clearly. Under Logins, give your IMADA followed by your stedt (student.sdu.dk) login.

