Department of Mathematics and Computer Science February 13, 2007
University of Southern Denmark, Odense KSL

DM18 — Exam Project, part 2

Kim Skak Larsen
Spring 2007

I ntroduction

In this note, we describe one part of the exam project whicktrba solved in con-
nection with DM18, Spring 2007. It is important to read thgbuhe entire project
description before starting the work on the project; alsoglctions on requirements
and how to turn in your solution.

Deadline

Wednesday, March 14, 2007, at 12:00.

A scanner and parser in C

Among other things, you must turn in a program which must bigewin the program-
ming language C. It must be the variant which is called ANSIF@is excludes C++,
in particular.

You must construct a scanner using the took¥ and a parser using the tool &N.
Using BISON, you must build an abstract syntax tree. Finally, you mustewa pret-
typrinter, which should be used to document that the scagnparsing, and building of
the syntax tree have been carried out correctly. Here, gypréatter is a program which
prints the abstract syntax tree with appropriately chosdantation and/or sufficiently
many parenthesis to make it possible, preferably easy ify¥iee abstract syntax tree.

The language you will work with is calledi@rIs, and it is partially defined by the

grammar in Fig. 1 and 2. The figure has been split in two for gypphical reasons

only.

The start symbol igbody), and all terminal symbols are written in bold face.

There is more information about the language below. It is phthe assignment to

decide which of these could most conveniently be dealt withése phases and which

should be postponed until the phases weed, symbol, typéiclge@and code genera-
tion.

(function) : (head (body) (tail)
(head : funcid ((par.decllist)) : (type)
(tail) endid
(type) :id
| int
| bool

| array of (type)
| record of { (vardecllist) }
(pardecllist) : (var.decllist)

| e
(var.decllist) : (var.decllist) , (var_type)
| (var.type)
(var_type) id : (type)
(body) : (decllist) (statementist)
(decllist) : (decllist) (declaratiofy
| e
(declaratioh : typeid = (type) ;
| (function)

| var (vardecllist) ;
(statementist) : (statemerjt

| (statementist) (statemenjt
(statement : return (expressioh;

| write (expressioh;

| allocate (variablé (optlength ;

| (variablé = (expressioh;

| if (expressiohthen (statement(opt.else

| loop (statement

| continue;

| break ;

| { (statementist) }
(optlength : of length (expressioh

| e
(optelse : else (statemernit
| e
(variablé :id
| (variablé [(expressioh]
| (variablé . id

Figure 1: Grammar for iIGRIS, part 1.

(expressioh

(term)

(actlist)

(explist)

: (expressiohop (expressioh
| (term
: (variable

id ((actlist))

((expressioh)

null
: (explist)
| e
: (expressioh
| (explist) , (expressioh

Figure 2: Grammar for TIGRIS, part 2.

The semantics of the various constructions are mostly alsyibased on usual com-
puter scientific tradition. The few which are not are als@désed below.

Further requirementsfor Tigris programs

The list below is intentionally incomplete. Partly becaneeall information is relevant
right now and partly because some of the decisions of thisraahould be made as a
part of answering the project as a whole. Some informatisalessant for this part of
the project, but most have been included to give a sufficreptéssion of the language.

e id are usual identifiers.

e num are usual integers.

e A function name is repeated after teed which terminates the function defini-

tion. Thus, the twads afterfunc andend must be identical.

e Atafunction call, parameters which are simple types aregxhas values where-

as composite types (arrays and records) are passed bynedere

e All invocations of a function must result in the executioregftur n statement.

e write prints the value ofexpressiof, which can be limited to being an integer,
followed by a return.

o allocate (variable of length (expressiohallocates space in memory. This space
is of size (expressioh for an array with the namévariablé, while allocate
(variablé allocates space for a record @fariablé’s type.

¢ A function definition introduces a new (nested) scope.

o { (statementist) } is a “compund statement”, which can be used for group-
ing statements such that more than one statement can betexécualoop-
construction, for example.

e The keywordsontinue andbreak are for use in doop-construction. A loop
is by default infinite. The keywordontinue starts the execution of the nearest
enclosing loop from the beginning wherdaeak terminates the execution of
the nearest enclosing loop. As an example, the followingecadids positive
numbers from an array A, stopping when a zero is encountered:

i=-1;
sum = 0;
loop {
i=i+1;
if [A|==1| A[i] == 0 then break;
if Ali] < Othen continue;
sum = sum + A[i];

}

e opcanbet, — * /[, ==1=, >, <, >=, <=, &&, | |

e | (expressiop| can denote the size of an array or the absolute value of an
integer expression.

e Array indices start with.
e null is the standard value for a reference variable (array aratd@c

e Type definitions may be limited to one level. Thus, type dextlans inside
array and record type definitions may be restricted to justsimple typesi(t
or bool) or an identifier. Type declaration of function parameteesoe limited
in the same way, i.e., if the type is not simple, then the usgstiwrite a (type)
identifier which is defined elsewhere in thesRIs program. Note that it is only
the syntactic nesting which is simplified. You must still Hdeato handle nested
constructions via type variables.

e (* is used as the beginning of a comment afdloses the comment. Comments
may run over several lines and may be nested.

Turningin
Electronically, you must turn in

o a FLEX file.

e a Bisonfile.

e a C-program, which uses the files produced by the definities fibove to im-
plement a prettyprinter of [GRIS-programs from an AST, build via thei8oN
definition file.

e a makefile, connecting all of the above.

Additionally, you must hand in a report with program listéngf all of the above, along
with brief descriptions of the most important choices madeé process; among these,
grammar rewriting or other actions taken to remove conflicteu must include a
sufficient and documented testing. See also the standandeatents.

Standard Requirements

This section contains a description of standard requirésriarconnection with exam
projects and how they should be turned in. All informationd necessarily relevant
for each part of your project.

You must always turn in your report on paper. This part is mfthllowing referred to
asthe report. If the development of a program is part of the assignmeigt,gtogram
must be turned in electronically as well.

Exam Rules

This assignment is an exam project. Cooperation beyond isleadplicitly permitted
will be considered cheating and will be treated as such. Yaela duty to keep your
notes private and protect your files against reading andingfby others. Both parties
involved in a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficienetior each assignment
and you are strongly encouraged to plan your work such thatlbfinish some days
before the deadline.

Assignments which are turned in after the deadline will rmabcepted. Downtime on
the system or the printers will not automatically result mextension; not even if it
is the last hours before the deadline. Neither will own otdren’s illness without a

statement from your physician, etc.

Solutions

All specific requirements posed in the project descriptiarstiof course be fulfilled.

The Report

The report should in the best possible manner account faritiee solution. Possible
omissions, known errors, etc. should be described in thertel is often a good idea
to do this in a separate section instead of mixing it in with ttést of the report.

You must include the page at the end of this document as thépgamge of your report
or attached in some way such that it is easily located. Thertepust be dated and
signed by the members of the group.

If a program must be turned in as part of your solution, you tntaise care of the
following:

The report must contain (possibly as an appendix) a pringintpe entire program.
This printing must be identical with the program which isied in electronically. All
the pages of your program print-out must contain your grougmloer. One way of
obtaining this is to use

az2ps -g --header="Printed by group NN

whereNNis your group number.

The report must contain a description of the most importauct i@levant decisions
which have been made in the process of answering the assigamereasons must be
given where this is appropriate.

You must also explain how the program has been tested. Taesigs and test runs
can and should be included to the extent that this is meaulifigfally large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chasemes and indentation
and tested sufficiently. The numbers of characters (inolylanks) on a program line
is limited to 79. This is important for various tools used fospecting, evaluating,
and viewing your programs, and it is important for the pont-of parts of your own

program that you will see at the exam.

Programs will often be tested automatically. This makesiteznely important to
respect all interface-like demands, e.g., input/outpuhfas.

Programs which are turned in must compile and run on IMADA&cHines. You are
very welcome to develop your programs at home, but it is yesponsibility. This

includes technical problems at home, lack of access toantesoftware, moving data
to IMADA via modem, e-mail, ftp, floppy disks, USB keys, etadaconverting to the
correct format, e.g., between Windows and Linux.

Turning In

The report should be turned in at IMADA's secretaries’ offitae office may be closed
for very short periods of time. If, for some unexpected reatiee office must be closed
for longer periods of time close to the deadline, an annomece will be made outside
the office, giving instructions as to where you turn in yoyrae.

For the first parts of the projects, you only need to turn in coyy. For the final part,
you must turn in two copies.

Programs, test files, etc. should be turned in electroyic@he procedure for turning
in electronically can be found at

http://ww. i mada. sdu. dk/ ~ksl arsen/ dmL8/ Proj ekt /el afl . ht m

Department of Mathematics and Computer Science Spring 2007
University of Southern Denmark, Odense KSL

DM18, Spring 2007
Exam Project, part 2

Writedligible (block or printed letters)

Group

Date

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

This report containsatotalof pages.

