Department of Mathematics and Computer Science March 14, 2007
University of Southern Denmark, Odense KSL

DM18 — Exam Project, part 4

Kim Skak Larsen
Spring 2007

I ntroduction

In this note, we describe one part of the exam project whicktrba solved in con-
nection with DM18, Spring 2007. It is important to read thgbuhe entire project
description before starting the work on the project; alsogbctions on requirements
and how to turn in your solution.

Deadlines

Compiler | Wednesday, May 16, 2007 at 12:00
Report Wednesday, May 23, 2007 at 12:(00

A Tigris Compiler

Among other things, you must turn in a program which must li#tevrin the program-
ming language C. It must be the variant which is called ANSIF@is excludes C++,
in particular.

The primary new task of this part of the project is code geimmraincluding optimiza-

tion. These phases must then be combined with the front-esdluped in part 3 of
the project to form a complete compiler. The report mustttafiahe issues raised in
the four project parts. The requirements for the compiler i@port consist of all the
requirements from the four project parts.

The report must be structured logically as one document, it.eannot just be the
reports from the various project parts with a “rubber bandiuad. A report draft is
available via the course home page

Note that the deadlines do not imply that you can write a featisry report in one
week.

1The draft is in Danish since this would be what almost all stugl would want. Please contact the
lecturer if you have a translation problem

Code Gener ation

Code generation must be handled in at least two subphasi flollowing, these two
phases are described, but more can be added in between the two

The first phase generates abstract assembler code, whitthlm®entium code, but
which could be somewhat or significantly different. Somesiuyg differences could

be that jump addresses are pointers to the linked list gfd¢hia (abstract) instructions.
Another possibility is that temporary variables are usetidiad of explicit references
to either stack or registers.

In the last phase, you must generate Intel Pentium Assembleil style from the
more or less abstract assembler code. You are allowed tpriset f statements in
your assembler code, as it has been done in the examples couttse home page. You
are not allowed to use other functions from the C-libraryhwiit explicit permission.

In between the two phases, you may place a number of optimizphases. If you
have used temporary variables in your abstract assemtaer titen such a phase could
determine which temporary variables are placed in registad which are placed on
the stack.

Independent of the choice of abstract assembler code, lpgepaptimization is an
obvious possibility for an optimization phase.

Execution Requirements

The makefile you turn in must be able to generate the compteteiter as an exe-
cutable file using only your flex, bison, and C source files. ustof course be able to
run on the department’s computers. Example computers aroltlowing, which are
also the ones you can connect to using ssh from outside IMADA:

130.225.128.190 alceste.imada.sdu.dk
130.225.128.191 arabella.imada.sdu.dk
130.225.128.192 euridike.imada.sdu.dk
130.225.128.193 lucia.imada.sdu.dk
130.225.128.194 lucretia.imada.sdu.dk
130.225.128.195 erda.imada.sdu.dk
130.225.128.196 mimi.imada.sdu.dk
130.225.128.197 dido.imada.sdu.dk
130.225.128.198 woglinde.imada.sdu.dk

The compiler (the executable) must be caltédgri s (all lower case) and it must
(even though it can be generated by the makefile) alreadyrergged in the directory
you are turning in.

Ifyouwritetigris < fil ename.ti goncommand line and thel@RIS program
filenane.tigis correct, then your compiler must produce Intel Pentiuraehs-
bler code AT&T style for the program. This must be senstalout . If the TIGRIS

program contains errors, absolutely nothing should bdevritost dout . Instead, an
error message must be writtendbder r . In either case, every time a new phase is
started, the name of the phase should be writtest ter r .

The compiler fai n in the C program) must retuhif the compilation is successful
and another integer otherwiskif you do not have a reason to choose something else).

If, after a successful compilation, the output from your @iler has been placed on
afilefil ename. s and you writegcc fil enane. s on command line, then a file
a. out must be generated which executes with the correct resuh@départment’s
computers. This requires that you strictly respect theireqents forpr i nt which
must print its integer argument followed by a newline withany extra spaces or other
characters.

The generated assembler code must refuire., as the last code you gener@tejust
be placed in %eax, followed by code to return to the operaystem according to the
conventions for this. There is one exception from this: tfuamtime, you catch one of
the errors described under the heading “Runtime Safetydwgments”, the assembler
program should return the value indicated there.

Testing

The first code generation phase should be tested throughc@du printing the more

or less abstract assembler code to a file such that you cdy trexi the code produced
is what you expect. This work can to a large extent be reusétkitast phase of the
code generation.

As the final testing, a sufficient collection of@rIs programs must be tested, and you
must verify that the correct result is produced. This shdiddsupplemented by well
chosen internal tests of critical functionalities.

In the directory hone/ | MADA/ cour ses/ dmlL8, you will find a checking program,
check. py. Itis highly recommended that in addition to your own catéésting,
you also test using this program, since this is the prograiotwiill be used by us in
connection with an automatic testing of all compilers. la teginning of this check
program, you can see how to use it.

We emphasize that testing using oolgeck. py is not considered a sufficient test of
the compiler.

Extensions

A minimal core language, IGRIS, has been chosen as the starting point. The pur-
pose of only including the most necessary constructioneénanguage definition is

to leave room for an individualization of the project by gigiyou the choice of which
extensions to make. Thus, you are expected to add moredsatuyour compiler.

In that context, there are the following requirements:

e You should not start work on extensions before having cotaglthe basic work
of implementing a compiler for the core language.

e It really should be extensions. You are not allowed to mottigycore language.
In particular, your compiler should be able to compile al thst programs.

e Any new facility should be motivated, described, and docutae.

Below, we list some possibilities, but you are very welcomeéntroduce your own

ideas. Some of the extensions are (much) harder than otNers. goal should be

to implement at least (part of) one extension from each othinee collections: lan-

guage extensions, runtime safety improvements, and adda@densions. From the
collection with advanced extensions, the peep-hole opéitiun is a task which is both
interesting and can be limited to be quite manageable. Eurtbre, it has the ad-
vantage that you can start with a simple version with fewguatt and then gradually
include more.

If you spend time considering extensions, but do not managemplete the imple-
mentation, give a short account of your considerations aedstatus of your work
implementing it.

L anguage Extensions

e Unary minus (42 instead o) — 42, for instance).

e Multi-dimensional arrays (this is different from arraysasfays; you must have a
layout such that for instance the address of A[i,j,k] candmputed directly and
not via three pointer/offset operations as one would n#yuda using A[i][j][K]).

e Array and record constants.
e Forloops.

e Print of strings; possibly extended to strings as a type watfious string opera-
tors.

e Aninput facility (herescanf from the C library may be used).
e Coercion from one type to another.
e More flexible assignment compatibility (including transfé parameters).

e Possibility for structural assignment of records and afayaking a copy instead
of a reference to the same object).

Runtime Safety | mprovements

¢ Run-time check for array index values (return value 2).

Run-time check for division by zero (return value 3).

Run-time check for positive argument for array allocatimiyrn value 4).

Run-time check for use of uninitialized variables, inchglindexing and deref-
erencing of null pointers (return value 5).

Run-time check for out-of-memory (return value 6).

Advanced Extensions

e Peep-hole optimization.

¢ Introduction of af r ee command to free previously allocated array and record
space. For this to be at all useful, your system should ofsmalow reuse of
this space.

e Full (automatic) garbage collection of (unused) arraysraedrds.
e Advanced register allocation.

e Reuse of stack space for local variables and spilled temigsraot used simul-
taneously.

In addition to these three collections of extensions, wieaeh group should make at
least one from each, there are many further possibilitiesiristance, the following:

Extra Extensions

e Constant folding.

¢ Algebraic simplification.

Turning In

Electronically, you must turn in

¢ all relevant files from this and previous parts of the praoject
e a makefile, connecting all of the above.

e The compiletti gri s as an executable file.

In addition, you must turn in two identical print-outs of yoeport and code files.
There should be a reasonable and documented test of allgptese also the standard
requirements.

Evaluation

In order to pass, the compiler must work on a reasonable sob3aGRris. A com-
piler which does not generate working code for even the sstadind simplestiGRIs
programs will not be accepted.

Additionally, your compiler will be judged on structure, reectness, elegance, and
extent.

The report should not be a textbook. Thus, in general you resyrae what all partic-
ipants in the course know. However, do keep the censor in bt is nice with a
brief description of the setting in each section as a refsr@oint for your own work.

Most importantly, the report should contain descriptiod dncumentation for the most
important choices made. A report is not good just becausddnig! Think carefully
about what to include and try to make it “to the point”, but du exclude interesting
choices and considerations.

Standard Requirements

This section contains a description of standard requirésriarconnection with exam
projects and how they should be turned in. All informationd necessarily relevant
for each part of your project.

You must always turn in your report on paper. This part is mfthllowing referred to
asthe report. If the development of a program is part of the assignmeig,gtogram
must be turned in electronically as well.

Exam Rules

This assignment is an exam project. Cooperation beyond isheadplicitly permitted
will be considered cheating and will be treated as such. Yauela duty to keep your
notes private and protect your files against reading andingfy others. Both parties
involved in a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficienetior each assignment
and you are strongly encouraged to plan your work such thawgibfinish some days
before the deadline.

Assignments which are turned in after the deadline will rmabcepted. Downtime on
the system or the printers will not automatically result mextension; not even if it
is the last hours before the deadline. Neither will own otdren’s illness without a

statement from your physician, etc.

Solutions

All specific requirements posed in the project descriptiarsnof course be fulfilled.

The Report

The report should in the best possible manner account fagritiee solution. Possible
omissions, known errors, etc. should be described in thertel is often a good idea
to do this in a separate section instead of mixing it in with ttést of the report.

You must include the page at the end of this document as thépgamge of your report
or attached in some way such that it is easily located. Thertepust be dated and
signed by the members of the group.

If a program must be turned in as part of your solution, you tntaise care of the
following:

The report must contain (possibly as an appendix) a pringinthe entire program.
This printing must be identical with the program which isied in electronically. All
the pages of your program print-out must contain your grougmloer. One way of
obtaining this is to use

az2ps -g --header="Printed by group NN

whereNNis your group number.

The report must contain a description of the most importauck @elevant decisions
which have been made in the process of answering the assigamereasons must be
given where this is appropriate.

You must also explain how the program has been tested. Tasigs and test runs
can and should be included to the extent that this is meaulifigfally large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chasemes and indentation
and tested sufficiently. The numbers of characters (inolydlanks) on a program line
is limited to 79. This is important for various tools used fospecting, evaluating,
and viewing your programs, and it is important for the pont-of parts of your own

program that you will see at the exam.

Programs will often be tested automatically. This makesiteznely important to
respect all interface-like demands, e.g., input/outpuhfs.

Programs which are turned in must compile and run on IMADA&cHines. You are
very welcome to develop your programs at home, but it is yesponsibility. This

includes technical problems at home, lack of access toantesoftware, moving data
to IMADA via modem, e-mail, ftp, floppy disks, USB keys, etadaconverting to the
correct format, e.g., between Windows and Linux.

Turning In

The report should be turned in at IMADA's secretaries’ offitbe office may be closed
for very short periods of time. If, for some unexpected rea#ite office must be closed
for longer periods of time close to the deadline, an annomece will be made outside
the office, giving instructions as to where you turn in yoyrad.

For the first parts of the projects, you only need to turn in coyy. For the final part,
you must turn in two copies.

Programs, test files, etc. should be turned in electroyic@he procedure for turning
in electronically can be found at

http: //ww. i mada. sdu. dk/ ~ksl arsen/ dmL8/ Proj ekt /el afl . ht m

Department of Mathematics and Computer Science Spring 2007
University of Southern Denmark, Odense KSL

DM18, Spring 2007
Exam Project, part 4

Writedligible (block or printed letters)

Group

Date

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

This report containsatotalof pages.

