A Survey on Advice and Randomization for the Knapsack Problem

Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, and Peter Rossmanith

$$
\text { July 7, } 2014 \quad \text { TOLA } 2014 \quad \text { Copenhagen }
$$

Online Problems and Advice Complexity Introduction

Online Problem

- Sequence of requests
- Answer each request before the next one arrives
- Minimize cost / maximize gain
- Examples: Ski Rental, k-Server, Paging, Job Shop Scheduling

Online Problem

- Sequence of requests
- Answer each request before the next one arrives
- Minimize cost / maximize gain
- Examples: Ski Rental, k-Server, Paging, Job Shop Scheduling

Competitive Ratio (Maximization)

An online algorithm ALG is c-competitive if there is a constant α such that, for every instance I, we have
$c \cdot($ Gain of ALG's solution on $I)+\alpha \geq$ Optimal gain for I

Online Problem

- Sequence of requests
- Answer each request before the next one arrives
- Minimize cost / maximize gain
- Examples: Ski Rental, k-Server, Paging, Job Shop Scheduling

Competitive Ratio (Maximization)

An online algorithm ALG is c-competitive if there is a constant α such that, for every instance I, we have
$c \cdot($ Gain of ALG's solution on $I)+\alpha \geq$ Optimal gain for I
If optimum is constant, $\alpha=0$.

How much information are we missing ...

- to be optimal?
- to achieve some competitive ratio?

How much information are we missing ...

- to be optimal?
- to achieve some competitive ratio?

Example: Ski Rental

How much information are we missing ...

- to be optimal?
- to achieve some competitive ratio?

Example: Ski Rental

- No information about future \leftrightarrows 2-competitive

How much information are we missing ...

- to be optimal?
- to achieve some competitive ratio?

Example: Ski Rental

- No information about future \leftrightarrows 2-competitive
- One bit of advice \leftrightarrows optimal

How much information are we missing ...

- to be optimal?
- to achieve some competitive ratio?

Example: Ski Rental

- No information about future \leftrightharpoons 2-competitive
- One bit of advice \lrcorner optimal

Motivation

- Theoretical interest: Deeper understanding of the problems
- "Essence" of the problem
- Bounds for randomization

The Model

Computation with Advice
Oracle with unlimited power:
(1) Sees all requests
(2) Prepares infinite tape

The Model

Computation with Advice

Oracle with unlimited power:
(1) Sees all requests
(2) Prepares infinite tape

Algorithm starts:
(3) Processes n requests one by one, can use advice tape
(3) Advice: Total number of advice bits accessed

The Model

Computation with Advice

Oracle with unlimited power:
(1) Sees all requests
(2) Prepares infinite tape

Algorithm starts:
(3) Processes n requests one by one, can use advice tape
(3) Advice: Total number of advice bits accessed

Analysis

- Solution: (oracle, algorithm)
- Correctness: the pair works correctly on all inputs
- Advice complexity: Maximal advice over all inputs of length $\leq n$

The Knapsack Problem
Introduction

Definition (KP)

Given a knapsack of weight capacity $1, n$ objects arrive in successive time steps where each object has

- a weight $w_{i} \leq 1$
- a value v_{i}

Maximize value of packed objects without exceeding capacity

After an object is offered, it must be specified whether it is part of the solution

Definition (KP)

Given a knapsack of weight capacity $1, n$ objects arrive in successive time steps where each object has

- a weight $w_{i} \leq 1$
- a value v_{i}

Maximize value of packed objects without exceeding capacity

After an object is offered, it must be specified whether it is part of the solution

In its simple version (SKP), $w_{i}=v_{i}$, for every object i

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

Let $\varepsilon>0$

ALG OPT

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

Let $\varepsilon>0$

ALG
OPT

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

Let $\varepsilon>0$

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

Let $\varepsilon>0$

ALG

OPT

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

Let $\varepsilon>0, \operatorname{comp}(\operatorname{ALG}(I))=1 / \varepsilon$

ALG

OPT

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

Let $\varepsilon>0$

ALG OPT

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

Let $\varepsilon>0$

ALG
OPT

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

Let $\varepsilon>0, \operatorname{comp}(\operatorname{ALG}(I))=\varepsilon / 0$

The Simple Knapsack Problem Advice for Optimality

Theorem

There is an optimal online algorithm for the SKP that reads n advice bits.

Theorem

There is an optimal online algorithm for the SKP that reads n advice bits.

- With every offered object i, read one bit b_{i}

If $\mathbf{b}_{\mathbf{i}}=\mathbf{0}$: take object
If $\mathbf{b}_{\mathbf{i}}=1$: discard object

Theorem

There is an optimal online algorithm for the SKP that reads n advice bits.

- With every offered object i, read one bit b_{i}

$$
\begin{aligned}
& \text { If } \mathbf{b}_{\mathbf{i}}=0 \text { : take object } \\
& \text { If } \mathbf{b}_{\mathbf{i}}=1 \text { : discard object }
\end{aligned}
$$

- This bound is tight. In other words, ...

Theorem

Any online algorithm with advice for the SKP needs to use at least $n-1$ advice bits to be optimal.

The Simple Knapsack Problem

 Small Advice
Observation

- If sum of weights ≤ 1, greedy is optimal
- Else if every object has weight $<\delta$, gain of greedy is $\geq 1-\delta$

Observation

- If sum of weights ≤ 1, greedy is optimal
- Else if every object has weight $<\delta$, gain of greedy is $\geq 1-\delta$

Theorem

There is an online algorithm ALG for the SKP that uses 1 advice bit and that is 2 -competitive.

Observation

- If sum of weights ≤ 1, greedy is optimal
- Else if every object has weight $<\delta$, gain of greedy is $\geq 1-\delta$

Theorem

There is an online algorithm ALG for the SKP that uses 1 advice bit and that is 2-competitive.

- Oracle writes 1 on tape iff one object has size $>1 / 2$
- Consider ALG that reads one bit b of advice

If $\mathbf{b}=0$: satisfy greedily
If $\mathbf{b}=1$: wait for object of size $>1 / 2$

The Simple Knapsack Problem - Small Advice
Case 1: $b=0$

Case 1: $b=0$

ALG
OPT

Case 1: $b=0$

ALG
OPT

Case 1: $b=0$

ALG
OPT

Case 1: $b=0$

Case 1: $b=0$

\square

Case 1: $b=0$

Case 1: $b=0$
Case 2: $b=1$

Case 1: $b=0$

Case 2: $b=1$

ALG
OPT

Case 1: $b=0$

ALG

Case 2: $b=1$

ALG
OPT

Case 1: $b=0$

ALG

Case 2: $b=1$

ALG

Case 1: $b=0$

Case 2: $b=1$

Surprisingly, any additional bit does not help until logarithmic threshold

Theorem

No online algorithm for the SKP that uses less than $\log _{2} n-1$ advice bits is better than 2-competitive.

Surprisingly, any additional bit does not help until logarithmic threshold

Theorem

No online algorithm for the SKP that uses less than $\log _{2} n-1$ advice bits is better than 2-competitive.

Theorem

There is an online algorithm for the SKP that is $(1+\varepsilon)$-competitive and that uses $\mathcal{O}\left(\log _{2} n\right)$ advice bits, $\varepsilon>0$.

Surprisingly, any additional bit does not help until logarithmic threshold

Theorem

No online algorithm for the SKP that uses less than $\log _{2} n-1$ advice bits is better than 2-competitive.

Theorem

There is an online algorithm for the SKP that is $(1+\varepsilon)$-competitive and that uses $\mathcal{O}\left(\log _{2} n\right)$ advice bits, $\varepsilon>0$.

- Inspect optimal solution
\Rightarrow Group objects into k heavy (depending on ε) and light ones
- Compute bound t for space filled by light objects
- Number of heavy objects and t only depend on ε

Surprisingly, any additional bit does not help until logarithmic threshold

Theorem

No online algorithm for the SKP that uses less than $\log _{2} n-1$ advice bits is better than 2-competitive.

Theorem

There is an online algorithm for the SKP that is $(1+\varepsilon)$-competitive and that uses $\mathcal{O}\left(\log _{2} n\right)$ advice bits, $\varepsilon>0$.

- Inspect optimal solution
\Rightarrow Group objects into k heavy (depending on ε) and light ones
- Compute bound t for space filled by light objects
- Number of heavy objects and t only depend on ε

However, as we have seen before, an exponential jump has to be done to be optimal instead of only "very well"

The General Knapsack Problem Small Competitive Ratio

- No longer assume that weights and values are equal and ≤ 1
\Rightarrow Weights are ≤ 1, values are possibly larger
- No longer assume that weights and values are equal and ≤ 1
\Rightarrow Weights are ≤ 1, values are possibly larger

Theorem

No online algorithm for the KP that uses less than $\log _{2} n$ advice bits can obtain a competitive ratio better than 2^{n}.

- No longer assume that weights and values are equal and ≤ 1
\Rightarrow Weights are ≤ 1, values are possibly larger

Theorem

No online algorithm for the KP that uses less than $\log _{2} n$ advice bits can obtain a competitive ratio better than 2^{n}.

Theorem

There is a $(1+\varepsilon)$-competitive online algorithm for the KP that uses $\mathcal{O}\left(\log _{2} n\right)$ advice bits, $\varepsilon>0$.

- No longer assume that weights and values are equal and ≤ 1
\Rightarrow Weights are ≤ 1, values are possibly larger

Theorem

No online algorithm for the KP that uses less than $\log _{2} n$ advice bits can obtain a competitive ratio better than 2^{n}.

Theorem

There is a $(1+\varepsilon)$-competitive online algorithm for the KP that uses $\mathcal{O}\left(\log _{2} n\right)$ advice bits, $\varepsilon>0$.

- Asymptotically equivalent to simple version
\Rightarrow Constant of \mathcal{O} notation is much worse

Advice and Randomization

Computation with Advice

- Oracle \leftrightarrows Infinite advice tape \leftrightarrows Algorithm
- Oracle: Knows whole input, unlimited computational power
- Advice tape prepared before the algorithm starts
- Advice complexity $b(n)$: Maximal number of bits read for inputs of length \mathbf{n}

Computation with Advice

- Oracle \Rightarrow Infinite advice tape \Rightarrow Algorithm
- Oracle: Knows whole input, unlimited computational power
- Advice tape prepared before the algorithm starts
- Advice complexity $b(n)$: Maximal number of bits read for inputs of length \mathbf{n}

Randomization

- Random source \leftrightarrows Infinite random tape \leftrightarrows Algorithm
- Random bit complexity $r(n)$: Maximal number of bits read for inputs of length \mathbf{n}

Randomization and Advice

- $2^{b(n)}$ algorithms or $2^{r(n)}$ algorithms
- Advice may be seen as best random string for every instance
\leftrightarrows Lower bounds for advice carry over to randomization
\leftrightarrows Upper bounds for randomization carry over to advice
- Small advice may lead to barely random algorithms, e. g.,
- Paging
- Job Shop Scheduling
- Knapsack

Advice and Randomization

Barely Random Algorithm for the Simple Knapsack Problem

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but. . .

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but. . .

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but. . .

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but. . .

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

```
If b = 0: act greedily
If b=1: simulate greedy, start when greedy is done
```

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

```
If b = 0: act greedily
If b=1: simulate greedy, start when greedy is done
```

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

```
If b = 0: act greedily
If b=1: simulate greedy, start when greedy is done
```

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but. . .

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

```
If b = 0: act greedily
If b=1: simulate greedy, start when greedy is done
```

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

```
If b = 0: act greedily
If b=1: simulate greedy, start when greedy is done
```

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

```
If b = 0: act greedily
If b=1: simulate greedy, start when greedy is done
```

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

```
If b = 0: act greedily
If b=1: simulate greedy, start when greedy is done
```

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\Rightarrow 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but. . .

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but. . .

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but. . .

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but. . .

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but. . .

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Guess one bit and act as with advice
\leftrightarrows 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

If $\mathbf{b}=0$: act greedily
If $\mathbf{b}=1$: simulate greedy, start when greedy is done

Case 1: $b=0$

Case 2: $b=1$

Suppose, all objects fit into the knapsack...

Suppose, all objects fit into the knapsack...
\Rightarrow Greedy strategy optimal, second strategy gains nothing, so

$$
\mathrm{E}[\operatorname{comp}(\operatorname{RAND}(I))]=\frac{\operatorname{cost}(\mathrm{OPT})}{\frac{1}{2} \cdot \operatorname{cost}(\mathrm{OPT})+\frac{1}{2} \cdot 0}=2
$$

Suppose, all objects fit into the knapsack...
\Rightarrow Greedy strategy optimal, second strategy gains nothing, so

$$
\mathbb{E}[\operatorname{comp}(\operatorname{RAND}(I))]=\frac{\operatorname{cost}(\mathrm{OPT})}{\frac{1}{2} \cdot \operatorname{cost}(\mathrm{OPT})+\frac{1}{2} \cdot 0}=2
$$

Suppose, they do not all fit. . .

Suppose, all objects fit into the knapsack...
\Rightarrow Greedy strategy optimal, second strategy gains nothing, so

$$
\mathrm{E}[\operatorname{comp}(\operatorname{RAND}(I))]=\frac{\operatorname{cost}(\mathrm{OPT})}{\frac{1}{2} \cdot \operatorname{cost}(\mathrm{OPT})+\frac{1}{2} \cdot 0}=2
$$

Suppose, they do not all fit. . .
\Rightarrow Gains x and y of both strategies are, in the sum, ≥ 1, so

$$
\operatorname{E}[\operatorname{comp}(\operatorname{RAND}(I))]=\frac{\operatorname{cost}(\mathrm{OPT})}{\frac{1}{2} \cdot x+\frac{1}{2} \cdot y} \leq \frac{1}{\frac{1}{2} \cdot(x+y)} \leq 2
$$

Suppose, all objects fit into the knapsack...
\Rightarrow Greedy strategy optimal, second strategy gains nothing, so

$$
\mathrm{E}[\operatorname{comp}(\operatorname{RAND}(I))]=\frac{\operatorname{cost}(\mathrm{OPT})}{\frac{1}{2} \cdot \operatorname{cost}(\mathrm{OPT})+\frac{1}{2} \cdot 0}=2
$$

Suppose, they do not all fit. . .
\Rightarrow Gains x and y of both strategies are, in the sum, ≥ 1, so

$$
\mathrm{E}[\operatorname{comp}(\operatorname{RAND}(I))]=\frac{\operatorname{cost}(\mathrm{OPT})}{\frac{1}{2} \cdot x+\frac{1}{2} \cdot y} \leq \frac{1}{\frac{1}{2} \cdot(x+y)} \leq 2
$$

Theorem

This is the best you can do for the SKP in randomized online computation.

Conclusion

Simple Knapsack Problem

- 1 advice bit suffices to be 2-competitive; surprisingly...
- any additional bit does not help until logarithmic advice
$\Rightarrow(1+\varepsilon)$-competitive algorithm, $\varepsilon>0$

Simple Knapsack Problem

- 1 advice bit suffices to be 2 -competitive; surprisingly...
- any additional bit does not help until logarithmic advice
$\Rightarrow(1+\varepsilon)$-competitive algorithm, $\varepsilon>0$
- linear number necessary / sufficient to be optimal
\Rightarrow exponential jump to be "a little better"

Simple Knapsack Problem

- 1 advice bit suffices to be 2 -competitive; surprisingly...
- any additional bit does not help until logarithmic advice
$\Rightarrow(1+\varepsilon)$-competitive algorithm, $\varepsilon>0$
- linear number necessary / sufficient to be optimal
\Rightarrow exponential jump to be "a little better"
- One random bit as powerful as one advice bit
- More random bits do not help

Simple Knapsack Problem

- 1 advice bit suffices to be 2-competitive; surprisingly...
- any additional bit does not help until logarithmic advice
$\Rightarrow(1+\varepsilon)$-competitive algorithm, $\varepsilon>0$
- linear number necessary / sufficient to be optimal
\Rightarrow exponential jump to be "a little better"
- One random bit as powerful as one advice bit
- More random bits do not help
- Resource augmentation: Very good (depending on δ) with constant number of advice bits

Simple Knapsack Problem

- 1 advice bit suffices to be 2-competitive; surprisingly...
- any additional bit does not help until logarithmic advice
$\Rightarrow(1+\varepsilon)$-competitive algorithm, $\varepsilon>0$
- linear number necessary / sufficient to be optimal
\Rightarrow exponential jump to be "a little better"
- One random bit as powerful as one advice bit
- More random bits do not help
- Resource augmentation: Very good (depending on δ) with constant number of advice bits

General Knapsack Problem

- Not competitive with sub-logarithmic advice
- $(1+\varepsilon)$-competitive with logarithmic advice, $\varepsilon>0$
- Randomization does not help

Thank you for your attention!

