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Online Problem

Sequence of requests

Answer each request before the next one arrives

Minimize cost / maximize gain

Examples: Ski Rental, k-Server, Paging, Job Shop Scheduling

Competitive Ratio (Maximization)

An online algorithm ALG is c-competitive if there is a constant α
such that, for every instance I , we have

c · (Gain of ALG’s solution on I ) + α ≥ Optimal gain for I

If optimum is constant, α = 0.
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Advice Complexity

How much information are we missing . . .

to be optimal?

to achieve some competitive ratio?

Example: Ski Rental

No information about future ➩ 2-competitive

One bit of advice ➩ optimal

Motivation

Theoretical interest: Deeper understanding of the problems

“Essence” of the problem

Bounds for randomization
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Advice Complexity

The Model

Computation with Advice

Oracle with unlimited power:

1 Sees all requests

2 Prepares infinite tape

Algorithm starts:

3 Processes n requests one by
one, can use advice tape

4 Advice: Total number of
advice bits accessed

Analysis

Solution: (oracle, algorithm)

Correctness: the pair works
correctly on all inputs

Advice complexity: Maximal
advice over all inputs of
length ≤ n
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The Knapsack Problem

Definition (KP)

Given a knapsack of weight capacity 1, n objects arrive in
successive time steps where each object has

a weight wi ≤ 1

a value vi

Maximize value of packed objects without exceeding capacity

After an object is offered, it must be specified whether it is part of
the solution

In its simple version (SKP), wi = vi , for every object i
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The Knapsack Problem

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large
competitive ratio for the SKP (and thus KP).

Let ε > 0, comp(ALG(I )) = 1/ε

1 1
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The Knapsack Problem

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large
competitive ratio for the SKP (and thus KP).

Let ε > 0, comp(ALG(I )) = ε/0

1

OPTALG

ε ε
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The Simple Knapsack Problem – Advice for Optimality

Theorem

There is an optimal online algorithm for the SKP that reads n
advice bits.

With every offered object i , read one bit bi

If bi = 0: take object

If bi = 1: discard object

This bound is tight. In other words, . . .

Theorem

Any online algorithm with advice for the SKP needs to use at least
n − 1 advice bits to be optimal.
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The Simple Knapsack Problem – Small Advice

Observation

If sum of weights ≤ 1, greedy is optimal

Else if every object has weight < δ, gain of greedy is ≥ 1− δ

Theorem

There is an online algorithm ALG for the SKP that uses 1 advice
bit and that is 2-competitive.

Oracle writes 1 on tape iff one object has size > 1/2

Consider ALG that reads one bit b of advice

If b = 0: satisfy greedily

If b = 1: wait for object of size > 1/2
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The Simple Knapsack Problem – Small Advice

Surprisingly, any additional bit does not help until logarithmic threshold

Theorem
No online algorithm for the SKP that uses less than log2 n− 1 advice bits
is better than 2-competitive.

Theorem

There is an online algorithm for the SKP that is (1 + ε)-competitive and
that uses O(log2 n) advice bits, ε > 0.

Inspect optimal solution

➩ Group objects into k heavy (depending on ε) and light ones

Compute bound t for space filled by light objects

Number of heavy objects and t only depend on ε

However, as we have seen before, an exponential jump has to be done to

be optimal instead of only “very well”
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The General Knapsack Problem – Small Competitive Ratio

No longer assume that weights and values are equal and ≤ 1

➩ Weights are ≤ 1, values are possibly larger

Theorem

No online algorithm for the KP that uses less than log2 n advice
bits can obtain a competitive ratio better than 2n.

Theorem

There is a (1 + ε)-competitive online algorithm for the KP that
uses O(log2 n) advice bits, ε > 0.

Asymptotically equivalent to simple version

➩ Constant of O notation is much worse



Introduction The Knapsack Problem Advice and Randomization Conclusion

Advice and Randomization



Introduction The Knapsack Problem Advice and Randomization Conclusion

Advice and Randomization

Computation with Advice

Oracle ➩ Infinite advice tape ➩ Algorithm

Oracle: Knows whole input, unlimited computational power

Advice tape prepared before the algorithm starts

Advice complexity b(n):
Maximal number of bits read for inputs of length n



Introduction The Knapsack Problem Advice and Randomization Conclusion

Advice and Randomization

Computation with Advice

Oracle ➩ Infinite advice tape ➩ Algorithm

Oracle: Knows whole input, unlimited computational power

Advice tape prepared before the algorithm starts

Advice complexity b(n):
Maximal number of bits read for inputs of length n

Randomization

Random source ➩ Infinite random tape ➩ Algorithm

Random bit complexity r(n):
Maximal number of bits read for inputs of length n
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Advice and Randomization

Randomization and Advice

2b(n) algorithms or 2r(n) algorithms

Advice may be seen as best random string for every instance

➩ Lower bounds for advice carry over to randomization

➩ Upper bounds for randomization carry over to advice

Small advice may lead to barely random algorithms, e. g.,

Paging
Job Shop Scheduling
Knapsack
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Case 1: b = 0

Case 2: b = 1
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Suppose, all objects fit into the knapsack. . .

➩ Greedy strategy optimal, second strategy gains nothing, so

E[comp(RAND(I ))] =
cost(OPT)

1
2 · cost(OPT) +

1
2 · 0

= 2

Suppose, they do not all fit. . .

➩ Gains x and y of both strategies are, in the sum, ≥ 1, so

E[comp(RAND(I ))] =
cost(OPT)
1
2 · x + 1

2 · y
≤

1
1
2 · (x + y)

≤ 2

Theorem

This is the best you can do for the SKP in randomized online
computation.
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Conclusion

Simple Knapsack Problem

1 advice bit suffices to be 2-competitive; surprisingly. . .

any additional bit does not help until logarithmic advice

➩ (1 + ε)-competitive algorithm, ε > 0

linear number necessary / sufficient to be optimal

➩ exponential jump to be “a little better”

One random bit as powerful as one advice bit

More random bits do not help

Resource augmentation: Very good (depending on δ) with constant
number of advice bits

General Knapsack Problem

Not competitive with sub-logarithmic advice

(1 + ε)-competitive with logarithmic advice, ε > 0

Randomization does not help
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Thank you for your attention!
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