The Knapsack Problem

Advice and Randomization

Conclusion 000

A Survey on Advice and Randomization for the Knapsack Problem

Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, and Peter Rossmanith

July 7, 2014 TOLA 2014 Copenhagen

Introd	uction

The Knapsack Problem

Advice and Randomization

Conclusion 000

Online Problems and Advice Complexity Introduction

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000			
Online Problems			

Online Problem

- Sequence of requests
- Answer each request before the next one arrives
- Minimize cost / maximize gain
- Examples: Ski Rental, k-Server, Paging, Job Shop Scheduling

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000			
Online Problems			

Online Problem

- Sequence of requests
- Answer each request before the next one arrives
- Minimize cost / maximize gain
- Examples: Ski Rental, k-Server, Paging, Job Shop Scheduling

Competitive Ratio (Maximization)

An online algorithm ALG is c-competitive if there is a constant α such that, for every instance I, we have

 $c \cdot (Gain \text{ of ALG's solution on } I) + \alpha \geq Optimal gain for I$

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000			
Online Problems			

Online Problem

- Sequence of requests
- Answer each request before the next one arrives
- Minimize cost / maximize gain
- Examples: Ski Rental, k-Server, Paging, Job Shop Scheduling

Competitive Ratio (Maximization)

An online algorithm ALG is c-competitive if there is a constant α such that, for every instance I, we have

 $c \cdot (Gain \text{ of ALG's solution on } I) + \alpha \geq Optimal gain for I$

If optimum is constant, $\alpha = 0$.

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000			
Advice Complexity			

- to be optimal?
- to achieve some competitive ratio?

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000			
Advice Complexity			

- to be optimal?
- to achieve some competitive ratio?

Example: Ski Rental

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000			
Advice Complexity			

- to be optimal?
- to achieve some competitive ratio?

Example: Ski Rental

• No information about future ⇒ 2-competitive

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000			
Advice Complexity			

- to be optimal?
- to achieve some competitive ratio?

Example: Ski Rental

- No information about future ⇒ 2-competitive
- One bit of advice ⇒ optimal

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000			
Advice Complexity			

- to be optimal?
- to achieve some competitive ratio?

Example: Ski Rental

- No information about future ⇒ 2-competitive
- One bit of advice ⇒ optimal

Motivation

- Theoretical interest: Deeper understanding of the problems
- "Essence" of the problem
- Bounds for randomization

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000			
Advice Complexity			

The Model

Computation with Advice

Oracle with unlimited power:

- Sees all requests
- Prepares infinite tape

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000			
Advice Complexity			

The Model

Computation with Advice

Oracle with unlimited power:

- Sees all requests
- Prepares infinite tape

Algorithm starts:

- Processes n requests one by one, can use advice tape
- Advice: Total number of advice bits accessed

Introdu	iction
000	
Advice	Complexity

The Knapsack Problem

Advice and Randomization 000000

The Model

Computation with Advice

Oracle with unlimited power:

- Sees all requests
- Prepares infinite tape

Algorithm starts:

- Processes n requests one by one, can use advice tape
- Advice: Total number of advice bits accessed

Analysis

- Solution: (oracle, algorithm)
- Correctness: the pair works correctly on all inputs
- Advice complexity: Maximal advice over all inputs of length ≤ n

Introduction	

The Knapsack Problem ●○○○○○○○○○○○ Advice and Randomization

Conclusion 000

The Knapsack Problem Introduction

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	000000000000000000000000000000000000000		
The Knapsack Problem			

Definition (KP)

Given a knapsack of weight capacity 1, n objects arrive in successive time steps where each object has

- a weight $w_i \leq 1$
- a value v_i

Maximize value of packed objects without exceeding capacity

After an object is offered, it must be specified whether it is part of the solution

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	000000000000		
The Knapsack Problem			

Definition (KP)

Given a knapsack of weight capacity 1, n objects arrive in successive time steps where each object has

• a weight
$$w_i \leq 1$$

• a value v_i

Maximize value of packed objects without exceeding capacity

After an object is offered, it must be specified whether it is part of the solution

In its **simple** version (SKP), $w_i = v_i$, for every object *i*

The Knapsack Problem

Advice and Randomization

Conclusion 000

The Knapsack Problem

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

The Knapsack Problem

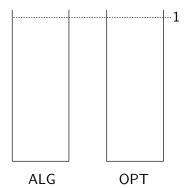
Advice and Randomization

Conclusion

The Knapsack Problem

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).



The Knapsack Problem

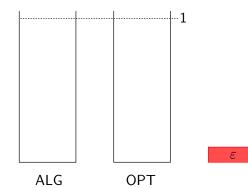
Advice and Randomization

Conclusion

The Knapsack Problem

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).



The Knapsack Problem

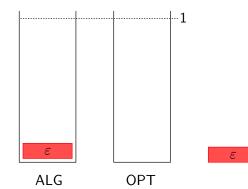
Advice and Randomization

Conclusion

The Knapsack Problem

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).



The Knapsack Problem

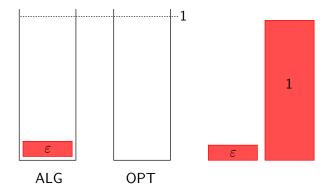
Advice and Randomization

Conclusion

The Knapsack Problem

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).



The Knapsack Problem

Advice and Randomization

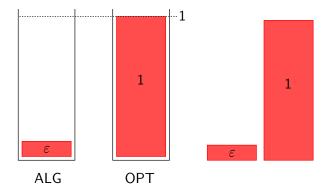
Conclusion

The Knapsack Problem

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

Let arepsilon > 0, comp $(\mathsf{ALG}(I)) = 1/arepsilon$



The Knapsack Problem

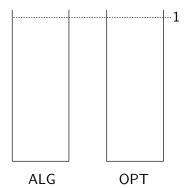
Advice and Randomization

Conclusion

The Knapsack Problem

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).



The Knapsack Problem

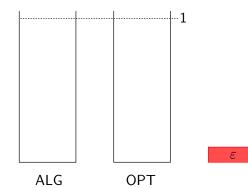
Advice and Randomization

Conclusion

The Knapsack Problem

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).



The Knapsack Problem

Advice and Randomization

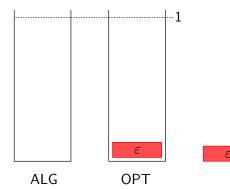
Conclusion

The Knapsack Problem

Theorem (Marchetti-Spaccamela and Vercellis; 1995)

Any deterministic online algorithm has an arbitrarily large competitive ratio for the SKP (and thus KP).

Let $\varepsilon > 0$, comp(ALG(I)) = $\varepsilon/0$



Introduction	

The Knapsack Problem

Advice and Randomization

Conclusion 000

The Simple Knapsack Problem Advice for Optimality

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	000000000000		
The Simple Knapsack Proble	em – Advice for Optimality		

Theorem

There is an optimal online algorithm for the SKP that reads n advice bits.

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	00000000000		
The Simple Knapsack Proble	m – Advice for Optimality		

Theorem

There is an optimal online algorithm for the SKP that reads n advice bits.

• With every offered object i, read one bit b_i

If $b_i = 0$: take object If $b_i = 1$: discard object

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	00000000000		
The Simple Knapsack Proble	m – Advice for Optimality		

Theorem

There is an optimal online algorithm for the SKP that reads n advice bits.

• With every offered object *i*, read one bit *b_i*

If $b_i = 0$: take object If $b_i = 1$: discard object

• This bound is tight. In other words, ...

Theorem

Any online algorithm with advice for the SKP needs to use at least n-1 advice bits to be optimal.

Introd	uction

The Knapsack Problem

Advice and Randomization

Conclusion 000

The Simple Knapsack Problem Small Advice

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	000000000000000000000000000000000000000		
The Simple Knapsack Proble	m – Small Advice		

Observation

- If sum of weights \leq 1, greedy is optimal
- Else if every object has weight $<\delta,$ gain of greedy is $\geq 1-\delta$

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	000000000000000000000000000000000000000		
The Simple Knapsack Proble	m – Small Advice		

Observation

- $\bullet~$ If sum of weights \leq 1, greedy is optimal
- Else if every object has weight $<\delta$, gain of greedy is $\geq 1-\delta$

Theorem

There is an online algorithm ALG for the SKP that uses 1 advice bit and that is 2-competitive.

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	00000000000000		
The Simple Knapsack Proble	m – Small Advice		

Observation

- $\bullet~$ If sum of weights \leq 1, greedy is optimal
- Else if every object has weight $<\delta$, gain of greedy is $\geq 1-\delta$

Theorem

There is an online algorithm ALG for the SKP that uses 1 advice bit and that is 2-competitive.

- Oracle writes 1 on tape iff one object has size > 1/2
- Consider ALG that reads one bit b of advice

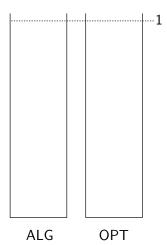
If b = 0: satisfy greedily If b = 1: wait for object of size > 1/2

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsack	Problem – Small Advice		

Case 1: b = 0

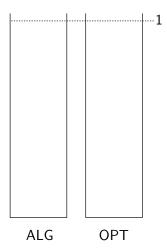
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion	
	0000000000000			
The Simple Knapsack Problem – Small Advice				

Case 1: b = 0

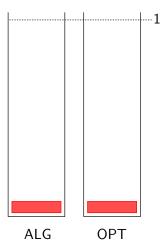


Introduction	The Knapsack Problem	Advice and Randomization	Conclusion	
	0000000000000			
The Simple Knapsack Problem – Small Advice				

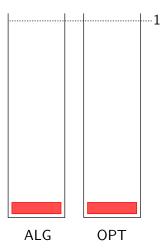
Case 1: b = 0



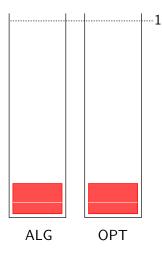
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsac	:k Problem – Small Advice		



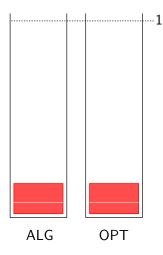
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsac	:k Problem – Small Advice		



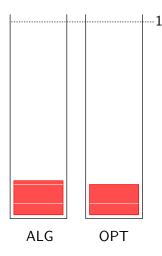
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsac	:k Problem – Small Advice		



Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsac	k Problem – Small Advice		



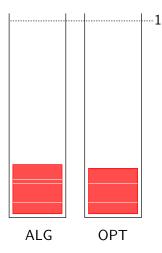
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsac	k Problem – Small Advice		



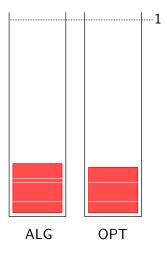
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsac	k Problem – Small Advice		



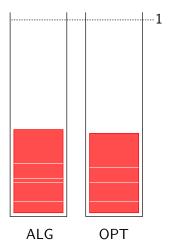
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000	00000000000000	000000	000
The Simple Knapsack I	Problem – Small Advice		



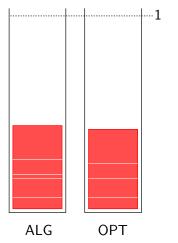
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsac	k Problem – Small Advice		

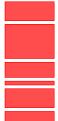


Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsac	:k Problem – Small Advice		

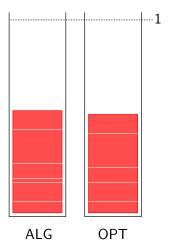


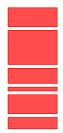
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsad	ck Problem – Small Advice		



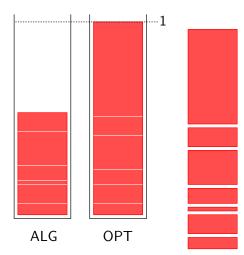


Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsad	ck Problem – Small Advice		

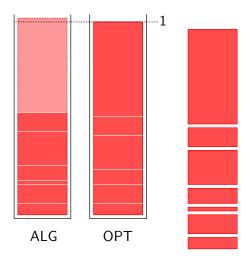




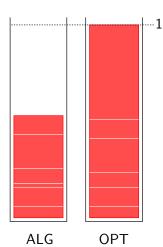
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	00000000000000		
The Simple Knapsack Proble	em – Small Advice		

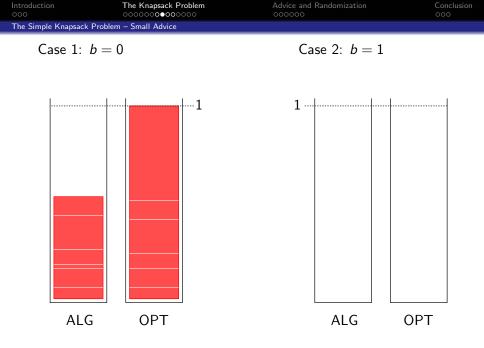


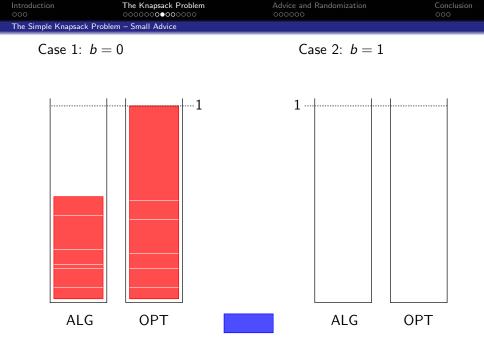
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	00000000000000		
The Simple Knapsack Pro	blem – Small Advice		

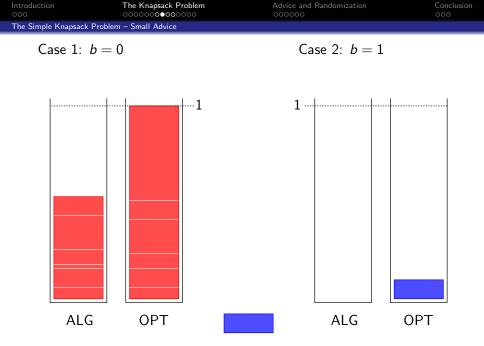


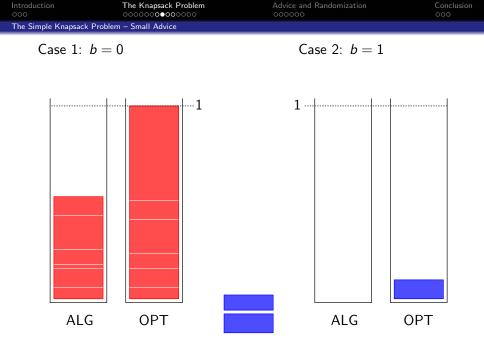
Introduction 000	The Knapsack Problem	Advice and Randomization	Conclusion
	k Problem – Small Advice		
Case 1:	b = 0	Case 2: $b = 1$	

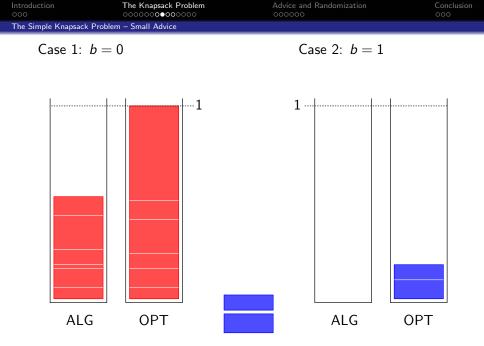


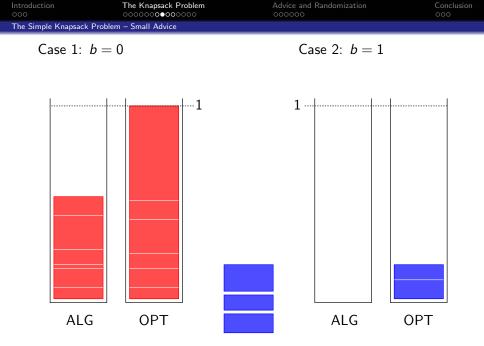


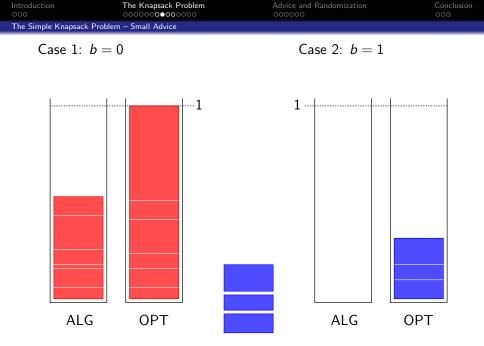


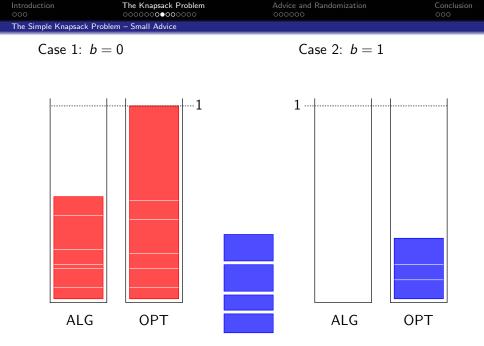


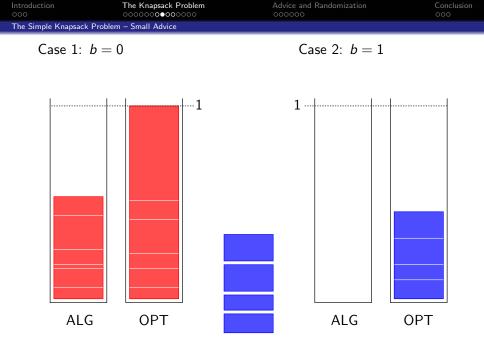


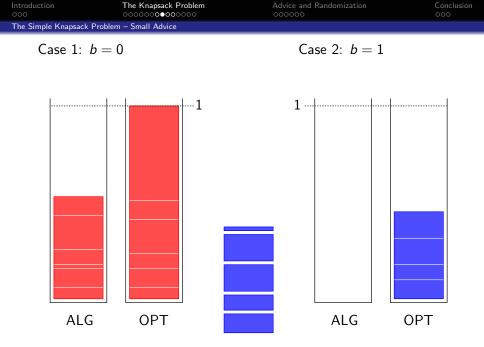


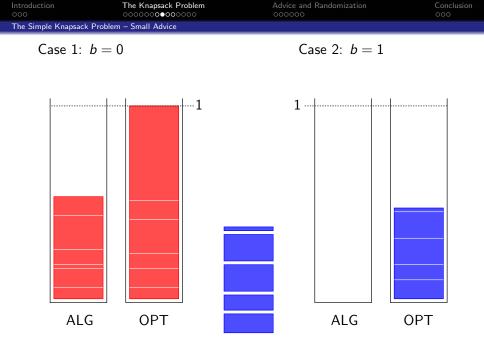


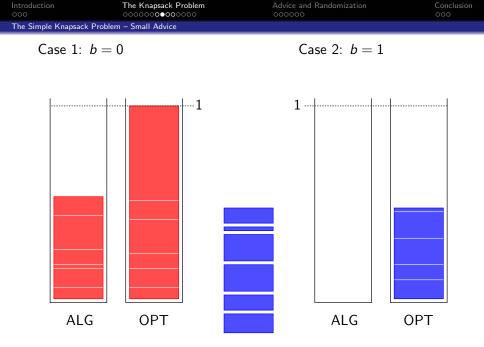


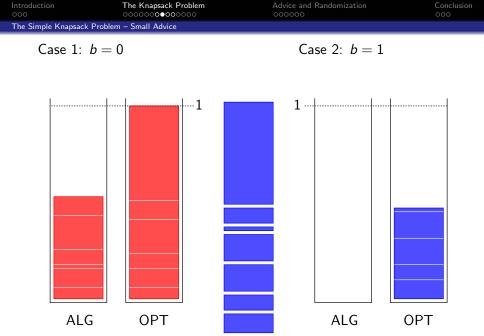


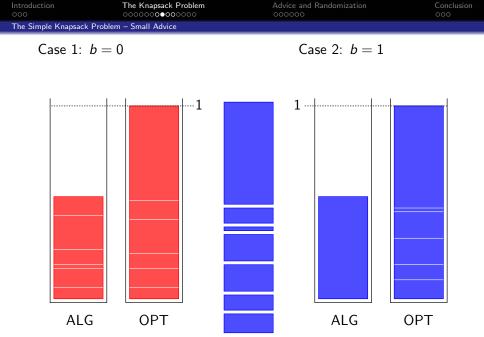












Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapsack Pro	blem – Small Advice		

Surprisingly, any additional bit does not help until logarithmic threshold

Theorem

No online algorithm for the SKP that uses less than $\log_2 n - 1$ advice bits is better than 2-competitive.

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		

Surprisingly, any additional bit does not help until logarithmic threshold

Theorem

No online algorithm for the SKP that uses less than $\log_2 n - 1$ advice bits is better than 2-competitive.

Theorem

There is an online algorithm for the SKP that is $(1 + \varepsilon)$ -competitive and that uses $O(\log_2 n)$ advice bits, $\varepsilon > 0$.

Introduction	The Knapsack Problem	Advice and Randomization	Conclusio
	0000000000000		

Surprisingly, any additional bit does not help until logarithmic threshold

Theorem

No online algorithm for the SKP that uses less than $\log_2 n - 1$ advice bits is better than 2-competitive.

Theorem

There is an online algorithm for the SKP that is $(1 + \varepsilon)$ -competitive and that uses $\mathcal{O}(\log_2 n)$ advice bits, $\varepsilon > 0$.

- Inspect optimal solution
- \Rightarrow Group objects into k heavy (depending on ε) and light ones
- Compute bound t for space filled by light objects
- Number of heavy objects and t only depend on ε

Introduction	The Knapsack Problem	Advice and Randomization	Conclusio
	0000000000000		
T I 01 1 14			

The Simple Knapsack Problem – Small Advice

Surprisingly, any additional bit does not help until logarithmic threshold

Theorem

No online algorithm for the SKP that uses less than $\log_2 n - 1$ advice bits is better than 2-competitive.

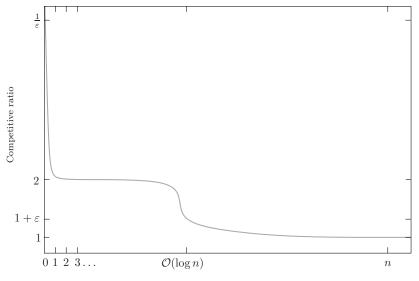
Theorem

There is an online algorithm for the SKP that is $(1 + \varepsilon)$ -competitive and that uses $\mathcal{O}(\log_2 n)$ advice bits, $\varepsilon > 0$.

- Inspect optimal solution
- \Rightarrow Group objects into k heavy (depending on ε) and light ones
- Compute bound t for space filled by light objects
- Number of heavy objects and t only depend on ε

However, as we have seen before, an exponential jump has to be done to be **optimal** instead of only "**very well**"

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000		
The Simple Knapcack Pro	blom Small Advice		



Number of advice bits

Introd	uction

The Knapsack Problem

Advice and Randomization

Conclusion 000

The General Knapsack Problem Small Competitive Ratio

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion	
	000000000000000000000000000000000000000			
The General Knapsack Problem – Small Competitive Ratio				

- ${\, \bullet \,}$ No longer assume that weights and values are equal and ≤ 1
- \Rightarrow Weights are \leq 1, values are possibly larger

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	000000000000000000000000000000000000000		
The General Knapsac	Problem – Small Competitive Ratio		

- $\bullet\,$ No longer assume that weights and values are equal and ≤ 1
- \Rightarrow Weights are \leq 1, values are possibly larger

Theorem

No online algorithm for the KP that uses less than $\log_2 n$ advice bits can obtain a competitive ratio better than 2^n .

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	0000000000000000		
The General Knapsack	Problem – Small Competitive Ratio		

- ullet No longer assume that weights and values are equal and ≤ 1
- \Rightarrow Weights are \leq 1, values are possibly larger

No online algorithm for the KP that uses less than $\log_2 n$ advice bits can obtain a competitive ratio better than 2^n .

Theorem

There is a $(1 + \varepsilon)$ -competitive online algorithm for the KP that uses $\mathcal{O}(\log_2 n)$ advice bits, $\varepsilon > 0$.

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
	000000000000000000000000000000000000000		
The General Knapsac	k Problem – Small Competitive Ratio		

- $\bullet\,$ No longer assume that weights and values are equal and ≤ 1
- \Rightarrow Weights are \leq 1, values are possibly larger

No online algorithm for the KP that uses less than $\log_2 n$ advice bits can obtain a competitive ratio better than 2^n .

Theorem

There is a $(1 + \varepsilon)$ -competitive online algorithm for the KP that uses $\mathcal{O}(\log_2 n)$ advice bits, $\varepsilon > 0$.

- Asymptotically equivalent to simple version
- \Rightarrow Constant of $\mathcal O$ notation is much worse

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
		00000	

Advice and Randomization

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000	0000000000000	00000	000
Advice and Randomization			

Computation with Advice

- Oracle
 → Infinite advice tape
 → Algorithm
- Oracle: Knows whole input, unlimited computational power
- Advice tape prepared before the algorithm starts
- Advice complexity b(n):
 Maximal number of bits read for inputs of length n

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
		00000	
Advice and Randomization			

Computation with Advice

- Oracle ⇒ Infinite advice tape ⇒ Algorithm
- Oracle: Knows whole input, unlimited computational power
- Advice tape prepared before the algorithm starts
- Advice complexity b(n):
 Maximal number of bits read for inputs of length n

Randomization

● Random source
→ Infinite random tape
→ Algorithm

Random bit complexity r(n):
 Maximal number of bits read for inputs of length n

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
		00000	
Advice and Randomization			

Randomization and Advice

- $2^{b(n)}$ algorithms or $2^{r(n)}$ algorithms
- Advice may be seen as best random string for every instance
- Lower bounds for advice carry over to randomization
- \Rightarrow Upper bounds for randomization carry over to advice
 - Small advice may lead to barely random algorithms, e.g.,
 - Paging
 - Job Shop Scheduling
 - Knapsack

Introduction	

The Knapsack Problem

Advice and Randomization

Advice and Randomization

Barely Random Algorithm for the Simple Knapsack Problem

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
		000000	
Advice and Randomization	– Barely Random Algorithm for the	Simple Knapsack Problem	

Guess one bit and act as with advice ⇒ 4-competitive in expt. and this is tight

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
		000000	
Advice and Randomization	– Barely Random Algorithm for the Sir	nple Knapsack Problem	

Guess one bit and act as with advice

⇒ 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

Introduction 000	The Knapsack Problem	Advice and Randomization	Conclusion 000
Advice and Randomiza	tion – Barely Random Algorithm for the S	Simple Knapsack Problem	
Guess on	e bit and act as with ad	vice	

⇒ 4-competitive in expt. and this is tight, but...

Theorem

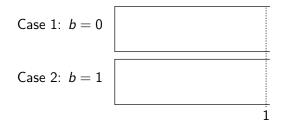
There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

Introduction 000	The Knapsack Problem	Advice and Randomization	Conclusion 000
Advice and Randomizat	ion – Barely Random Algorithm for the S	Simple Knapsack Problem	
Guess one	e bit and act as with ad [,]	vice	

 \Rightarrow 4-competitive in expt. and this is tight, but...

Theorem

There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

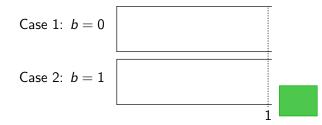


Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000	0000000000000	000000	000
Advice and Randomiz	ation – Barely Random Algorithm for the S	imple Knapsack Problem	
C			
Guess or	ne bit and act as with adv	/ICe	

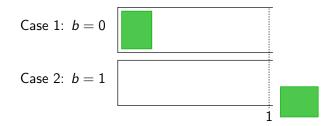
 \Rightarrow 4-competitive in expt. and this is tight, but...

Theorem

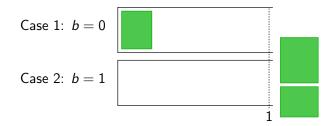
There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.



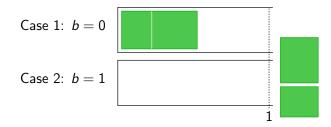
There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

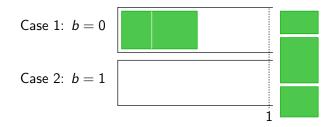


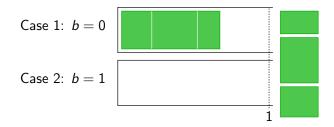
There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

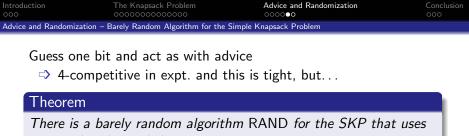


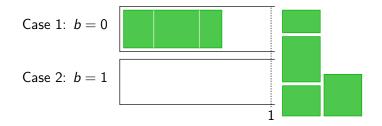
There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

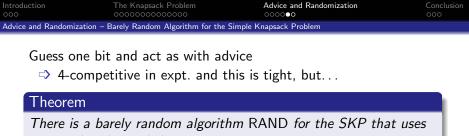


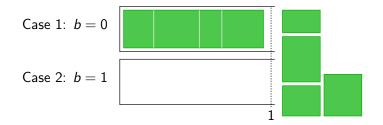


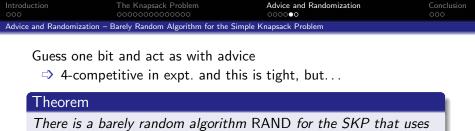


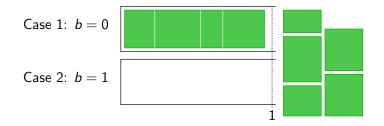


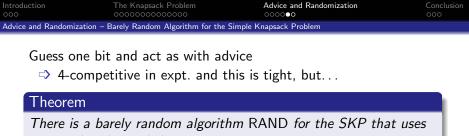




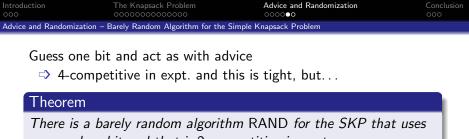


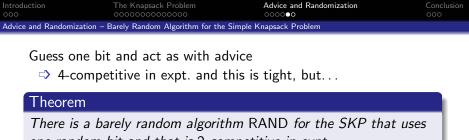


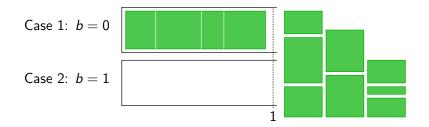




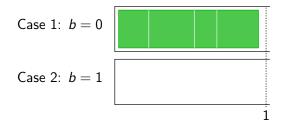


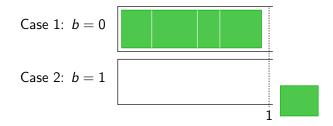


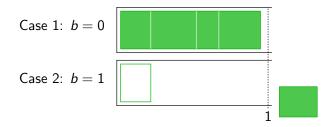


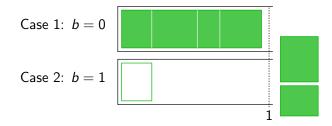


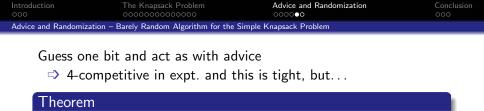
There is a barely random algorithm RAND for the SKP that uses one random bit and that is 2-competitive in expt.

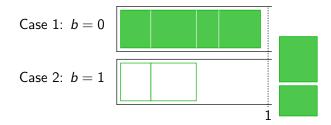


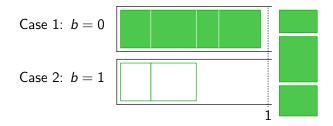


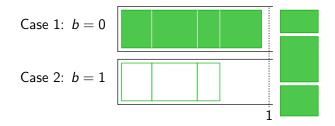


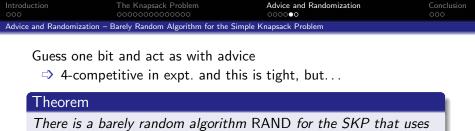


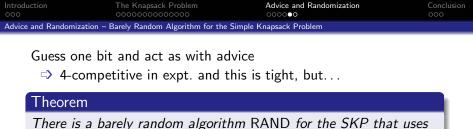


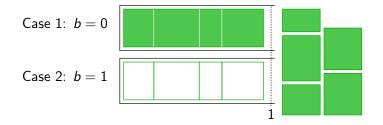


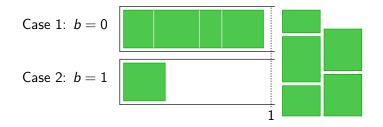


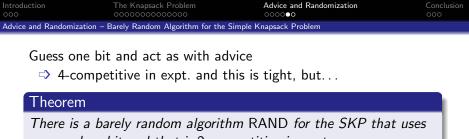


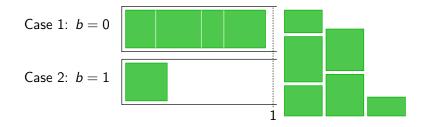


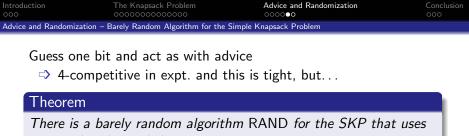


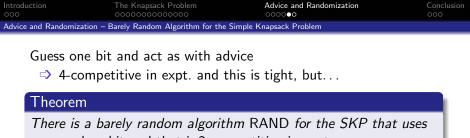


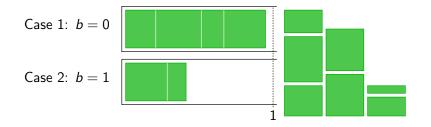


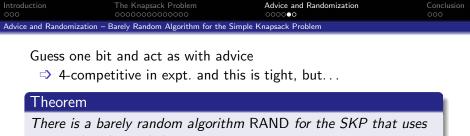




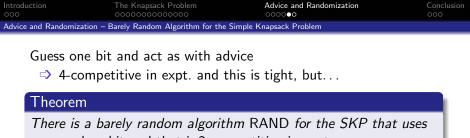


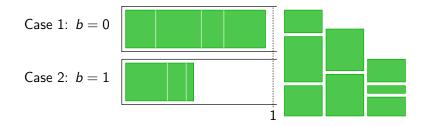


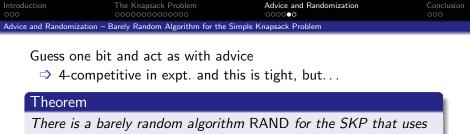












Advice and Rang	domization – Barely Random Algorithm for the S	imple Knapsack Problem	
		00000	
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion

Advice and Randomization – E	Barely Random Algorithm for the Simple K	napsack Problem	
		00000	
Introduction	The Knapsack Problem	Advice and Randomization	Conclusion

⇒ Greedy strategy optimal, second strategy gains nothing, so

$$\mathbb{E}[\operatorname{comp}(\mathsf{RAND}(I))] = \frac{\operatorname{cost}(\mathsf{OPT})}{\frac{1}{2} \cdot \operatorname{cost}(\mathsf{OPT}) + \frac{1}{2} \cdot 0} = 2$$

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000	0000000000000	○○○○○●	000
Advice and Randomization	– Barely Random Algorithm for the S	Simple Knapsack Problem	

⇒ Greedy strategy optimal, second strategy gains nothing, so

$$\mathbb{E}[\operatorname{comp}(\mathsf{RAND}(I))] = \frac{\operatorname{cost}(\mathsf{OPT})}{\frac{1}{2} \cdot \operatorname{cost}(\mathsf{OPT}) + \frac{1}{2} \cdot 0} = 2$$

Suppose, they do not all fit...

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
		000000	
Advice and Randomization -	- Barely Random Algorithm for the Sin	nple Knapsack Problem	

⇒ Greedy strategy optimal, second strategy gains nothing, so

$$\mathbb{E}[\operatorname{comp}(\mathsf{RAND}(I))] = \frac{\operatorname{cost}(\mathsf{OPT})}{\frac{1}{2} \cdot \operatorname{cost}(\mathsf{OPT}) + \frac{1}{2} \cdot 0} = 2$$

Suppose, they do not all fit...

⇒ Gains x and y of both strategies are, in the sum, ≥ 1, so $\mathbb{E}[\operatorname{comp}(\mathsf{RAND}(I))] = \frac{\operatorname{cost}(\mathsf{OPT})}{\frac{1}{2} \cdot x + \frac{1}{2} \cdot y} \le \frac{1}{\frac{1}{2} \cdot (x+y)} \le 2$

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
		000000	
Advice and Randomization -	- Barely Random Algorithm for the Sin	nple Knapsack Problem	

⇒ Greedy strategy optimal, second strategy gains nothing, so

$$\mathbb{E}[\operatorname{comp}(\mathsf{RAND}(I))] = \frac{\operatorname{cost}(\mathsf{OPT})}{\frac{1}{2} \cdot \operatorname{cost}(\mathsf{OPT}) + \frac{1}{2} \cdot 0} = 2$$

Suppose, they do not all fit...

 \Rightarrow Gains x and y of both strategies are, in the sum, ≥ 1 , so

$$\mathbb{E}[\operatorname{comp}(\mathsf{RAND}(I))] = \frac{\operatorname{cost}(\mathsf{OPT})}{\frac{1}{2} \cdot x + \frac{1}{2} \cdot y} \le \frac{1}{\frac{1}{2} \cdot (x+y)} \le 2$$

Theorem

This is the best you can do for the SKP in randomized online computation.

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000	000000000000	000000	000

Conclusion

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000 Conclusion	0000000000000	000000	000
Conclusion			

- 1 advice bit suffices to be 2-competitive; surprisingly...
- any additional bit does not help until logarithmic advice
- \Rightarrow (1 + ε)-competitive algorithm, ε > 0

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000	000000000000	000000	000
Conclusion			

- 1 advice bit suffices to be 2-competitive; surprisingly...
- any additional bit does not help until logarithmic advice
- \Rightarrow (1 + ε)-competitive algorithm, $\varepsilon > 0$
- linear number necessary / sufficient to be optimal
- exponential jump to be "a little better"

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
000	0000000000000	000000	000
Conclusion			

- 1 advice bit suffices to be 2-competitive; surprisingly...
- any additional bit does not help until logarithmic advice
- \Rightarrow (1 + ε)-competitive algorithm, ε > 0
- linear number necessary / sufficient to be optimal
- ⇒ exponential jump to be "a little better"
- One random bit as powerful as one advice bit
- More random bits do not help

Introduction 000	The Knapsack Problem	Advice and Randomization	Conclusion 000
Conclusion			

- 1 advice bit suffices to be 2-competitive; surprisingly...
- any additional bit does not help until logarithmic advice
- \Rightarrow (1 + ε)-competitive algorithm, ε > 0
- linear number necessary / sufficient to be optimal
- ⇒ exponential jump to be "a little better"
- One random bit as powerful as one advice bit
- More random bits do not help
- \bullet Resource augmentation: Very good (depending on $\delta)$ with constant number of advice bits

Introduction	The Knapsack Problem	Advice and Randomization	Conclusion
			000
Conclusion			

- 1 advice bit suffices to be 2-competitive; surprisingly...
- any additional bit does not help until logarithmic advice
- \Rightarrow (1 + ε)-competitive algorithm, ε > 0
- linear number necessary / sufficient to be optimal
- ⇒ exponential jump to be "a little better"
- One random bit as powerful as one advice bit
- More random bits do not help
- \bullet Resource augmentation: Very good (depending on $\delta)$ with constant number of advice bits

General Knapsack Problem

- Not competitive with sub-logarithmic advice
- (1+arepsilon)-competitive with logarithmic advice, arepsilon>0
- Randomization does not help

Introd	uction

The Knapsack Problem

Advice and Randomization

Conclusion ○○●

Thank you for your attention!