# Deciding the On-line Chromatic Number of a Graph with Pre-Coloring is PSPACE-Complete 

Christian Kudahl<br>University of Southern Denmark<br>kudahl@imada.sdu.dk<br>July 7, 2014

## On-line graph coloring

- The vertices of a graph are revealed one by one.


## On-line graph coloring

- The vertices of a graph are revealed one by one.
- When vertex, $v$, is revealed, it is revealed which vertices it is adjacent to (among those that were previously revealed).


## On-line graph coloring

- The vertices of a graph are revealed one by one.
- When vertex, $v$, is revealed, it is revealed which vertices it is adjacent to (among those that were previously revealed).
- The algorithm assigns a color to $v$ different from the colors it is already adjacent to. The color cannot be changed later.


## On-line graph coloring

- The vertices of a graph are revealed one by one.
- When vertex, $v$, is revealed, it is revealed which vertices it is adjacent to (among those that were previously revealed).
- The algorithm assigns a color to $v$ different from the colors it is already adjacent to. The color cannot be changed later.
- The goal is to use as few colors as possible.


## An example

## An example



## An example

## An example




## An example




## An example




## An example




## An example



## An example



## How to measure the quality of an algorithm?

## Competitive Analysis [Sleator, Tarjan 85]

An algorithm $A$ is $c$-competitive if there exists a $b$ such that for any graph, $G$, the following holds:

$$
A(G) \leq c \cdot \chi(G)+b
$$

Here, $\chi(G)$ is the chromatic number of $G$. That is the minimum number of colors needed to color $G$ (offline).

## How to measure the quality of an algorithm?

## Theorem [Gyarfas, Kiraly, Lehel 1990]

For any $k \in \mathbb{N}$, there exists a tree $T_{k}$ such that any on-line algorithm can be forced to use $k$ colors when on-line coloring $T_{k}$.


Figure: $T_{3}$ and $T_{4}$.

This means that no c-competitive algorithms exist for any constant $c$ even for the class of trees.

## How to measure the quality of an algorithm?

## On-line Competitive Analysis [Gyarfas, Kiraly, Lehel]

An algorithm $A$ is on-line c-competitive if there exists an $b$ such that for any graph, $G$, the following holds:

$$
A(G) \leq c \cdot \chi^{O}(G)+b
$$

Here, $\chi^{O}(G)$ is the on-line chromatic number of $G$. This is the smallest number such that there exists an algorithm that can color $G$ using at most $\chi^{O}(G)$ colors for every ordering of the vertices.

## On-line Chromatic Number



Figure: On-line coloring $G$. To the right, $G$ is shown.

## On-line Chromatic Number



Figure: On-line coloring $G$. To the right, $G$ is shown.

## On-line Chromatic Number



Figure: On-line coloring $G$. To the right, $G$ is shown.

## On-line Chromatic Number



Figure: On-line coloring $G$. To the right, $G$ is shown.

## On-line Chromatic Number



Figure: On-line coloring $G$. To the right, $G$ is shown.

## On-line Chromatic Number



Figure: On-line coloring $G$. To the right, $G$ is shown.

## On-line Chromatic Number



Figure: On-line coloring $G$. To the right, $G$ is shown.

It turns out that $\chi^{O}(G)=3$ (the bottom right vertex should have been given the color 3 instead).

## On-line Chromatic Number



Figure: On-line coloring $G$. To the right, $G$ is shown.

## On-line Chromatic Number



Figure: On-line coloring $G$. To the right, $G$ is shown.

## On-line Chromatic Number



Figure: On-line coloring $G$. To the right, $G$ is shown.

## The On-line Chromatic Number

We know that it is NP-complete given a $k \in \mathbb{N}$ and a graph $G$ to decide if $\chi(G) \leq k$.

## Main Problem

How hard is it given a $k \in \mathbb{N}$ and a graph $G$ to decide if $\chi^{O}(G) \leq k$ ?

## The On-line Chromatic Number

On-line Graph coloring can be seen as a game between the Drawer and the Painter.

- $(G, k)$ is the game instance they agree on before the game.


## The On-line Chromatic Number

On-line Graph coloring can be seen as a game between the Drawer and the Painter.

- $(G, k)$ is the game instance they agree on before the game.
- The Drawer presents a vertex on his turn.


## The On-line Chromatic Number

On-line Graph coloring can be seen as a game between the Drawer and the Painter.

- $(G, k)$ is the game instance they agree on before the game.
- The Drawer presents a vertex on his turn.
- The Painter colors that vertex on his turn.


## The On-line Chromatic Number

On-line Graph coloring can be seen as a game between the Drawer and the Painter.

- $(G, k)$ is the game instance they agree on before the game.
- The Drawer presents a vertex on his turn.
- The Painter colors that vertex on his turn.
- At each time, the presented graph is isomorphic to an induced subgraph of $G$.


## The On-line Chromatic Number

On-line Graph coloring can be seen as a game between the Drawer and the Painter.

- $(G, k)$ is the game instance they agree on before the game.
- The Drawer presents a vertex on his turn.
- The Painter colors that vertex on his turn.
- At each time, the presented graph is isomorphic to an induced subgraph of $G$.
- If the painter is able to color the entire graph without using more than $k$ colors, he wins. Otherwise, he loses.


## The On-line Chromatic Number

On-line Graph coloring can be seen as a game between the Drawer and the Painter.

- $(G, k)$ is the game instance they agree on before the game.
- The Drawer presents a vertex on his turn.
- The Painter colors that vertex on his turn.
- At each time, the presented graph is isomorphic to an induced subgraph of $G$.
- If the painter is able to color the entire graph without using more than $k$ colors, he wins. Otherwise, he loses.
- The painter has a winning strategy if and only if $\chi^{O}(G) \leq k$.


## The On-line Chromatic Number

We can consider the following related problem:

## On-line Chromatic Number with Pre-coloring

Given a state in the On-line Graph Coloring game, does the painter have a winning strategy from that state?

A state in the game means that a part of the graph has already been revealed and color.

This problem, which is also known as On-line Chromatic Number with Pre-coloring, is PSPACE-Complete.

## Sketch of Proof

- Reduction from quantified satisfiability in 3-DNF.

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$

- Mapping $F$ into graph $G$ with precoloring and a $k$.


## Sketch of Proof

- Reduction from quantified satisfiability in 3-DNF.

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$

- Mapping $F$ into graph $G$ with precoloring and a $k$.
- $F$ true $\Leftrightarrow$ Painter can color $G$ using at most $k$ colors.


## Sketch of Proof

- Reduction from quantified satisfiability in 3-DNF.

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$

- Mapping $F$ into graph $G$ with precoloring and a $k$.
- $F$ true $\Leftrightarrow$ Painter can color $G$ using at most $k$ colors.
- $F$ is false $\Leftrightarrow$ Drawer can force the painter to use more than $k$ colors.


## Sketch of Proof

- Reduction from quantified satisfiability in 3-DNF.

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$

- Mapping $F$ into graph $G$ with precoloring and a $k$.
- $F$ true $\Leftrightarrow$ Painter can color $G$ using at most $k$ colors.
- $F$ is false $\Leftrightarrow$ Drawer can force the painter to use more than $k$ colors.
- Two vertices for each variable.


## Sketch of Proof

- Reduction from quantified satisfiability in 3-DNF.

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$

- Mapping $F$ into graph $G$ with precoloring and a $k$.
- $F$ true $\Leftrightarrow$ Painter can color $G$ using at most $k$ colors.
- $F$ is false $\Leftrightarrow$ Drawer can force the painter to use more than $k$ colors.
- Two vertices for each variable.
- One vertex for each term.


## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



This is a part of the graph.

## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



- Variables can only get color 'true' or 'false' (using pre-coloring)
- If $C_{i}$ gets color 'false' (without conflict with variables), painter wins.
- Otherwise, he loses.


## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



- When a variable or clause is requested, the painter knows the index (by pre-coloring).
- For the existentially quantified variables, the painter also know if it is $v_{i}$ or $\overline{v_{i}}$.


## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



- If the formula is false, The Drawer can win.
- He requests the two vertices for each variable in order.
- For the universally quantified variables, he can decide the truth assignment.


## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$

## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



## Sketch of Proof



## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



## Sketch of Proof

$$
F=\forall x_{1} \exists x_{2} \forall x_{3}:\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right)
$$



If one clause had been satisfied, it could have received the color false and the painter would have won.

## Sketch of Proof



- An additional gadget ensures that the Drawer must request variables in order.
- When $F$ is true, the Painter can color existentially quantified variables according to the 'correct' truth assignment from the satisfiability problem.
- One clause will have no neighbour with color false, so it can get that color.


## Other results, Open Problems, and Conjectures

It is still unknown if the problem remains PSPACE-Complete without the pre-coloring.

Theorem
Online Chromatic Number without Pre-coloring is coNP-Hard.
Theorem
Online Chromatic Number without Pre-coloring is $\Sigma_{2}^{p}$-Hard in multigraphs.

Conjecture [Gyarfas, Lehel, Kiraly 98]
Given a graph, $G$, it is NP-hard to decide if $\chi^{O}(G) \leq 4$

## Thank you for listening!

