

HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity

The Price of Leasing Online TOLA 2014

Christine Markarian July 7, 2014

Joint work with:

Sebastian Abshoff Peter Kling Friedhelm Meyer auf der Heide

Christine Markarian 1

Parking Permit Problem

HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity

sunny day

walk

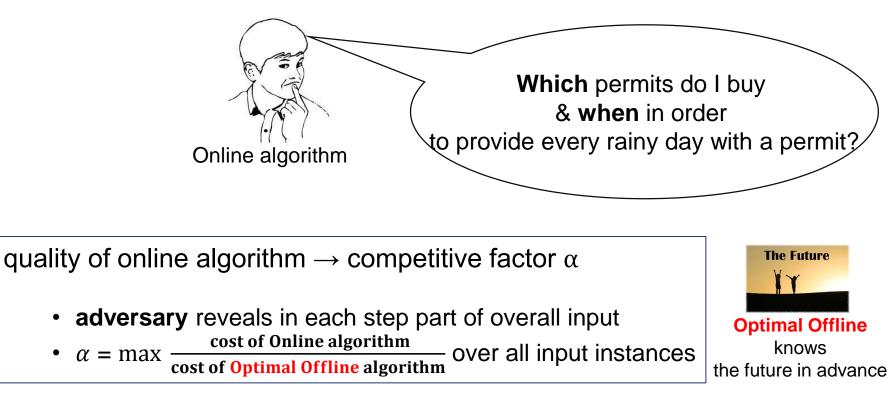
rainy day

drive

[Meyerson - FOCS 2003]

Parking Permit Problem

- adversary gives sunny or rainy on each day
- K permit lease types (Ex. daily, weekly, monthly, yearly)
- yearly permit is the most expensive but cheapest per day



Parking Permit Problem

Lower bounds	Upper bounds
$\Omega(K)$ deterministic	0(K) deterministic
$\Omega(\log K)$ randomized	0 (log K) randomized

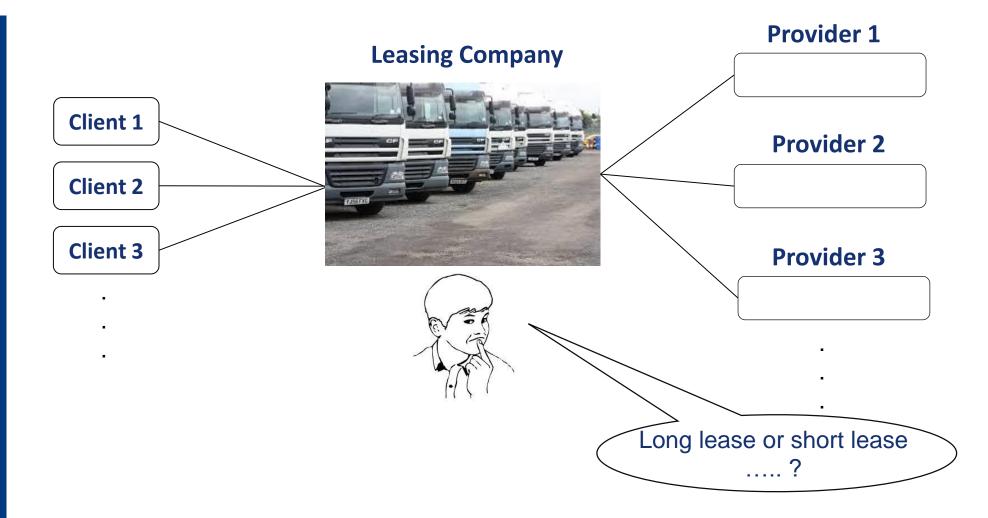
Deterministic algorithm

For each rainy day, buy a 1-day permit, until there is some $(k \in K)$ -interval where the **optimum offline solution** for the sequence of days seen so far, would buy a *k*-day permit. In this case, also buy a *k*-day permit.

Randomized algorithm Compute an $O(\log K)$ -competitive fractional solution and then convert it into a randomized integer solution which maintains the $O(\log K)$ -competitive factor.

[Meyerson - FOCS 2003]

Infrastructure Leasing Problems



Infrastructure Leasing Problems

- Almost any online infrastructure problem can be considered with a *leasing* aspect....
- Anthony & Gupta generalized the Parking Permit Problem
 - Facility Leasing
 - Steiner Tree Leasing
 - Set Cover Leasing

& gave offline algorithms to the problems...

Online Set cover

- $U = \{e_1, e_2, ..., e_n\}$
- family $F = \{S_1, S_2, \dots, S_m\}$ of subsets of *U* and a cost associated with each subset

• an element $e \in U$ arrives

-- choose sets from F to cover each arriving element $e \in U$ & minimize cost of sets --

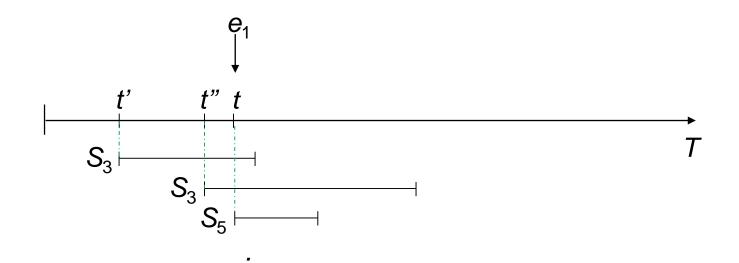
Set Cover Leasing

- $U = \{e_1, e_2, \dots, e_n\}$
- family F = {S₁, S₂,...., S_m} of subsets of U. Each set in F can be leased for K different periods of time such that leasing a set S for a period k :
 - incurs a cost c_{kS}
 - allows S to cover its elements for the next I_k time steps
- an element $e \in U$ arrives

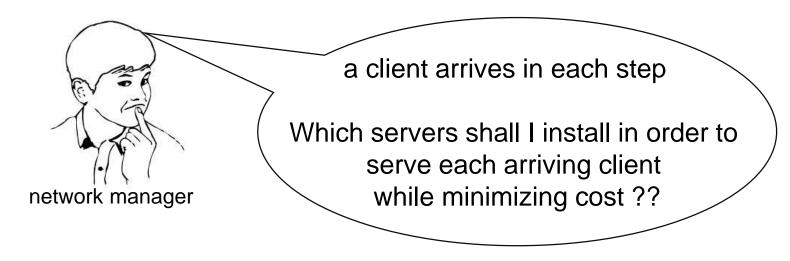
-- lease sets from *F* to cover each arriving element $e \in U$ & minimize cost of sets --

generalizes Online Set Cover (K = 1)- one infinite lease -

- e_1 arrives at time t
- $e_1 \in \{S_3, S_5, S_8\}$



Ex. servers/clients in a computer network



Once a server is installed, it serves its clients **forever** without additional costs... [Online set cover]

If servers are **leased** instead & can serve their clients only during the time they are leased... [Set cover leasing]

Lower bounds -none -related problems -Online Metric Facility Location: $\Omega(\frac{\log n}{\log \log n})$ [ICALP 2003] -Online Set Cover: $\Omega(\frac{\log n \log m}{\log \log n + \log \log m})$ [STOC 2003] Upper bounds -Online Metric Facility Leasing: $O(K \log n)$ [IPCO 2008] -An algorithm for Online Facility Leasing: $O(l_max \log l_max)$ [SIROCCO 12] -Randomized Online Algorithms for Set Cover Leasing Problems: $O(\log(mK) \log n)$ [submitted to WAOA]

Algorithm {Set Cover Leasing}

Maintain a fraction f_{Skt} for each set (S, k, t)

- set to 0 initially
- non-decreasing throughout algorithm

Maintain for each set (S, k, t)

- $2[\log(n+1)]$ independent random variables $X_{(Skt)(q)}$ in [0,1]
- Let $\mu_{Skt} = \min X_{(Skt)(q)}, 1 \le q \le 2[\log(n+1)]$

(j, t) arrives,

i. (fractional) If $\sum_{(S,k,T)\in Q_i} f_{Skt} < 1$, do the following increment

while
$$\sum_{(S,k,T)\in Q_j} f_{Skt} < 1;$$

 $f_{Skt} = f_{Skt} \cdot \left(1 + \frac{1}{c_{kS}}\right) + \frac{1}{|Q_j| \cdot c_{kS}}$

ii. (integer) Lease (S, k, T) $\in Q_j$ with $f_{Skt} > \mu_{Skt}$ iii. If (*j*, *t*) is not covered by some set in Q_j Lease the cheapest (S, k, T) $\in Q_j$ HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity

 $O(\log (dK) \log n) - competitive$

- (i) fractional $\leq O(\log(dK)) \cdot Opt$
- (ii) randomized integer $\leq O(\log n) \cdot fractional$
- *(iii)* step iii adds an expected cost of Opt/n

$O(\log (dK) \log n) - competitive$

(i) fractional ≤ 0(log(dK)) · Opt
(ii) randomized integer ≤ 0(log n) · fractional
(iii) step iii adds an expected cost of 0pt/n

Proof: (i)

- an *increment* adds at most 2 to the *fractional cost*

$$\sum_{(S,k,T)\in Q} \frac{c_S \cdot f_{Skt}}{c_S} + \frac{1}{|Q| \cdot c_S} \cdot = \sum_{(S,k,T)\in Q} f_{Skt} + 1 \le$$

- the total number of *increments* in the algorithm is $O(\log(dK)) \cdot Opt$

- At any time the algorithm decides to make an *increment*, $\exists S_{opt}$ which is a candidate and therefore increases its fraction $f_{S_{opt}kt}$
- After $O(c_S \cdot \log|Q|)$ increments, $f_{S_{opt}kt} > 1 \rightarrow \sum_{(S,k,T) \in Q} f_{Skt} > 1$
- $|Q| \leq d \cdot K$ [Interval Model: Same sets same leases do not coincide]

s a candidate and Parking Permit

Problem

HEINZ NIXDORF INSTITUTE University of Paderborn

Algorithms and Complexity

 $f_{Skt} = f_{Skt} \cdot \left(1 + \frac{1}{c_{kS}}\right) + \frac{1}{|O_i| \cdot c_{kS}}$

(fractional) If $\sum_{(S,k,T)\in Q_i} f_{Skt} < 1$, do the

while $\sum_{(S,k,T)\in Q_i} f_{Skt} < 1;$

iii. If (j, t) is not covered by some set in Q_j

2

Lease the cheapest (S, k, T) $\in Q_i$

ii. (integer) Lease $(S, k, T) \in Q_i$ with

Algorithm {i-cover}

 $f_{Skt} > \mu_{Skt}$

following increment

(*j*, *t*) arrives.

İ.

HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity

Proof: (ii) randomized integer $\leq O(\log n) \cdot fractional$

- Probability to lease a set is $Pr(f_{Skt} > \mu_{Skt})$
- $-\mu_{Skt} = \min X_{(Skt)(q)}, 1 \le q \le 2[\log(n+1)]$

Proof: (iii) step iii adds an expected cost of Opt/n

- [Algorithm leases the cheapest (S, k, T) \in Q] $c_S \leq Opt$
- Probability that an element is not covered [for a single q] is at most

$$\prod_{kt)\in Q} (1 - f_{Skt}) \le e^{-\sum_{(S,k,T)\in Q} f_{Skt}} \le 1/e$$

- Probability that an element is not covered is at most $1/n^2$
- additional expected cost $\leq n \cdot \frac{1}{n^2} \cdot Opt$

(S)

$$\rightarrow O(\log (dK) \log n) - competitive$$

HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity

Parking Permit Problem

Infrastructure Leasing Problems

Set Cover Leasing

The Price of Leasing Online

The Price of Leasing Online

Lower bounds

Online Set Cover:
$$\Omega(\frac{\log n \log m}{\log \log n + \log \log m})$$

+
Parking Permit Problem: $\Omega(K)$
?

Online Facility Location :
$$\Omega(\frac{\log n}{\log \log n})$$

+
Parking Permit Problem: $\Omega(K)$
?

• • • • •

Leasing algorithms so far use techniques from non-leasing algorithms & Parking Permit Problem...

Does leasing impose an inherent difficulty?

What is the price we pay for leasing?

HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity

Thank you for your attention!

Christine Markarian July 7, 2014