
Online Max-Edge-Coloring of Paths and Trees

Lene M. Favrholdt and Jesper W. Mikkelsen

Department of Mathematics and Computer Science

University of Southern Denmark

TOLA, July 7, 2014

Jesper W. Mikkelsen 1/34



Edge Coloring

An edge coloring of the Petersen graph using 4 colors.

Jesper W. Mikkelsen 2/34



Minimum Edge Coloring

Classical edge coloring:

I Color the edges of a graph using as few colors as possible.

Vizing's Theorem

Let G be a simple graph of maximum degree ∆(G). The minimum
number of colors needed to color all edges of G is either ∆(G) or
∆(G) + 1.

Jesper W. Mikkelsen 3/34



Minimum Edge Coloring

Classical edge coloring:

I Color the edges of a graph using as few colors as possible.

Vizing's Theorem

Let G be a simple graph of maximum degree ∆(G). The minimum
number of colors needed to color all edges of G is either ∆(G) or
∆(G) + 1.

Jesper W. Mikkelsen 3/34



Dual Edge Coloring

There is a dual version known as Edge-k-Coloring:

I A �xed number, k, of colors is available.

I The goal is to color as many edges as possible.

We label the k colors 1, 2, . . . , k.
For k = 1, this is the maximum matching problem.

Jesper W. Mikkelsen 4/34



Dual Edge Coloring

There is a dual version known as Edge-k-Coloring:

I A �xed number, k, of colors is available.

I The goal is to color as many edges as possible.

We label the k colors 1, 2, . . . , k.
For k = 1, this is the maximum matching problem.

Jesper W. Mikkelsen 4/34



Dual Edge Coloring

There is a dual version known as Edge-k-Coloring:

I A �xed number, k, of colors is available.

I The goal is to color as many edges as possible.

We label the k colors 1, 2, . . . , k.

For k = 1, this is the maximum matching problem.

Jesper W. Mikkelsen 4/34



Dual Edge Coloring

There is a dual version known as Edge-k-Coloring:

I A �xed number, k, of colors is available.

I The goal is to color as many edges as possible.

We label the k colors 1, 2, . . . , k.
For k = 1, this is the maximum matching problem.

Jesper W. Mikkelsen 4/34



Online Edge Coloring

Online Edge-k-Coloring

I Edges arrive one by one.

I Must immediately color a newly arrived edge with one of the k
colors or reject the edge.

I The decision is irrevocable.

Jesper W. Mikkelsen 5/34



Example for k = 2

2 1 2 1

Jesper W. Mikkelsen 6/34



Example for k = 2

1 2 1 2 1

Jesper W. Mikkelsen 6/34



Example for k = 2

1 2 2 1

Jesper W. Mikkelsen 6/34



Example for k = 2

1 2 1 2 1

Jesper W. Mikkelsen 6/34



Example for k = 2

1 1 2 1

Jesper W. Mikkelsen 6/34



Example for k = 2

1 2 1 2 1

Jesper W. Mikkelsen 6/34



Example for k = 2

1 2 1 2 1

Jesper W. Mikkelsen 6/34



Example for k = 2

1 2 1 2 1

Jesper W. Mikkelsen 6/34



Online Edge Coloring

Competitive analysis [Sleator, Tarjan '85], [Karlin et al. '88]

An algorithm A is c-competitive if

A(σ) ≥ c · OPT(σ)− b

for all sequence of edges σ.
For a randomized algorithm, replace A(σ) with E[A(σ)].
The competitive ratio C = sup{c : A is c-competitive}.

Jesper W. Mikkelsen 7/34



Online Edge Coloring

Competitive analysis [Sleator, Tarjan '85], [Karlin et al. '88]

An algorithm A is c-competitive if

A(σ) ≥ c · OPT(σ)− b

for all sequence of edges σ.
For a randomized algorithm, replace A(σ) with E[A(σ)].
The competitive ratio C = sup{c : A is c-competitive}.

Jesper W. Mikkelsen 7/34



Previous results

(Favrholdt, Nielsen '03)

I Negative results:

No deterministic algorithm has a competitive ratio better than 1
2 .

No randomized algorithm has a competitive ratio better than 4
7 .

I Positive results:

The competitive ratio of a fair algorithm is at least 2
√

3− 3 ≈ 0.46
An algorithm is fair if it never rejects an edge unless forced to do so.

Jesper W. Mikkelsen 8/34



Previous results

(Favrholdt, Nielsen '03)

I Negative results:

No deterministic algorithm has a competitive ratio better than 1
2 .

No randomized algorithm has a competitive ratio better than 4
7 .

I Positive results:

The competitive ratio of a fair algorithm is at least 2
√

3− 3 ≈ 0.46
An algorithm is fair if it never rejects an edge unless forced to do so.

Jesper W. Mikkelsen 8/34



What?

I In order to obtain a more �ne-grained analysis, we study
Edge-k-Coloring on some basic graph classes:

I For paths, we give an optimal (randomized) algorithm.

I For trees, we show that a natural algorithm called First-Fit is
optimal among deterministic algorithms.

I For trees and �tree-like� graphs, we show that any fair
algorithm for online Edge-k-Coloring performs well if k (the
number of colors) is su�ciently large.

Jesper W. Mikkelsen 9/34



Why?

Why paths and trees?

I Natural building blocks for studying more complicated graph
classes.

I All previous (negative) results for Edge-k-Coloring holds when
the input graph is a bipartite graph.

Jesper W. Mikkelsen 10/34



Why?

Why paths and trees?

I Natural building blocks for studying more complicated graph
classes.

I All previous (negative) results for Edge-k-Coloring holds when
the input graph is a bipartite graph.

Jesper W. Mikkelsen 10/34



Why?

Why paths and trees?

I Natural building blocks for studying more complicated graph
classes.

I All previous (negative) results for Edge-k-Coloring holds when
the input graph is a bipartite graph.

Jesper W. Mikkelsen 10/34



Algorithms

Recall that the competitive ratio of a fair algorithm is at least
2
√

3− 3 ≈ 0.46 and at most 1
2 (Favrholdt, Nielsen '03).

The following fair and deterministic algorithms have been studied:

I First-Fit uses the lowest available color when coloring an edge.
It can be viewed as the natural greedy strategy.

I Next-Fit remembers the last used color clast. When coloring an
edge, it uses the �rst available color in the ordered sequence
〈clast + 1, . . . , k, 1, . . . , clast〉.

Next-Fit is shown to have a competitive ratio of exactly 2
√

3− 3.
The competitive ratio of First-Fit is shown to be at most 0.48.

Jesper W. Mikkelsen 11/34



Algorithms

Recall that the competitive ratio of a fair algorithm is at least
2
√

3− 3 ≈ 0.46 and at most 1
2 (Favrholdt, Nielsen '03).

The following fair and deterministic algorithms have been studied:

I First-Fit uses the lowest available color when coloring an edge.
It can be viewed as the natural greedy strategy.

I Next-Fit remembers the last used color clast. When coloring an
edge, it uses the �rst available color in the ordered sequence
〈clast + 1, . . . , k, 1, . . . , clast〉.

Next-Fit is shown to have a competitive ratio of exactly 2
√

3− 3.
The competitive ratio of First-Fit is shown to be at most 0.48.

Jesper W. Mikkelsen 11/34



Algorithms

Recall that the competitive ratio of a fair algorithm is at least
2
√

3− 3 ≈ 0.46 and at most 1
2 (Favrholdt, Nielsen '03).

The following fair and deterministic algorithms have been studied:

I First-Fit uses the lowest available color when coloring an edge.
It can be viewed as the natural greedy strategy.

I Next-Fit remembers the last used color clast. When coloring an
edge, it uses the �rst available color in the ordered sequence
〈clast + 1, . . . , k, 1, . . . , clast〉.

Next-Fit is shown to have a competitive ratio of exactly 2
√

3− 3.
The competitive ratio of First-Fit is shown to be at most 0.48.

Jesper W. Mikkelsen 11/34



Relationship to vertex coloring

I Edge coloring a graph G is equivalent to vertex coloring the
line graph of G.

I This also holds in an online setting.

I In particular, online Edge-k-Coloring on paths is exactly the
same as online dual vertex coloring on paths.

Jesper W. Mikkelsen 12/34



Edge-2-Coloring on Paths

I Next-Fit has a competitive ratio of 1
2 on paths.

I First-Fit has a competitive ratio of 2
3 on paths.

1 2 1

Jesper W. Mikkelsen 13/34



Edge-2-Coloring on Paths

I Next-Fit has a competitive ratio of 1
2 on paths.

I First-Fit has a competitive ratio of 2
3 on paths.

1 2 1

Jesper W. Mikkelsen 13/34



Edge-2-Coloring on Paths

I Next-Fit has a competitive ratio of 1
2 on paths.

I First-Fit has a competitive ratio of 2
3 on paths.

1 2 1 2 1

Jesper W. Mikkelsen 13/34



Edge-2-Coloring on Paths

I Next-Fit has a competitive ratio of 1
2 on paths.

I First-Fit has a competitive ratio of 2
3 on paths.

1 2 1 2 1

Jesper W. Mikkelsen 13/34



Edge-2-Coloring on Paths

I Next-Fit has a competitive ratio of 1
2 on paths.

I First-Fit has a competitive ratio of 2
3 on paths.

1 2 1 2 1

No deterministic algorithm can do better than 2
3 .

Jesper W. Mikkelsen 13/34



Edge-2-Coloring on Paths

I Can a randomized algorithm do better than 2
3 ?

I Yes! There is a randomized algorithm with a competitive ratio
of 4

5 .

Jesper W. Mikkelsen 14/34



Edge-2-Coloring on Paths

I Can a randomized algorithm do better than 2
3 ?

I Yes! There is a randomized algorithm with a competitive ratio
of 4

5 .

Jesper W. Mikkelsen 14/34



Randp

Let 1
2 ≤ p ≤ 1. De�ne Randp as follows:

I For isolated edges, use the color 1 with probability p and the
color 2 with probability 1− p. Non-isolated edges are colored
if possible.

I Two types of rejections:

Jesper W. Mikkelsen 15/34



Randp

Let 1
2 ≤ p ≤ 1. De�ne Randp as follows:

I For isolated edges, use the color 1 with probability p and the
color 2 with probability 1− p. Non-isolated edges are colored
if possible.

I Two types of rejections:

?p p

Dashed edge is colored with probability p2 + (1− p)2.

Jesper W. Mikkelsen 15/34



Randp

Let 1
2 ≤ p ≤ 1. De�ne Randp as follows:

I For isolated edges, use the color 1 with probability p and the
color 2 with probability 1− p. Non-isolated edges are colored
if possible.

I Two types of rejections:

? pp (1− p)

Dashed edge is colored with probability p(1− p) + (1− p)p.

Jesper W. Mikkelsen 15/34



Randp

Choose the parameter p so that we balance the two situations:
p = ϕ√

5
≈ 0.72 gives a competitive ratio of 4

5 .

Jesper W. Mikkelsen 16/34



Randomization

I Can a randomized algorithm do better than 4
5 ?

I No. We prove this using Yao's minimax principle.

Jesper W. Mikkelsen 17/34



Randomization

I Can a randomized algorithm do better than 4
5 ?

I No. We prove this using Yao's minimax principle.

Jesper W. Mikkelsen 17/34



Edge-k-Coloring on Trees

I Suppose that the input graph is a tree.

I For k ≥ 2, we show that:
I The competitive ratio of any fair algorithm is at least 2

√
k−2

2
√
k−1 .

I The competitive ratio of First-Fit is exactly k−1
k .

I First-Fit is optimal among deterministic or fair algorithms.

Jesper W. Mikkelsen 18/34



Edge-k-Coloring on Trees

I Suppose that the input graph is a tree.

I For k ≥ 2, we show that:
I The competitive ratio of any fair algorithm is at least 2

√
k−2

2
√
k−1 .

I The competitive ratio of First-Fit is exactly k−1
k .

I First-Fit is optimal among deterministic or fair algorithms.

Jesper W. Mikkelsen 18/34



Edge-k-Coloring on Trees

I Suppose that the input graph is a tree.

I For k ≥ 2, we show that:
I The competitive ratio of any fair algorithm is at least 2

√
k−2

2
√
k−1 .

I The competitive ratio of First-Fit is exactly k−1
k .

I First-Fit is optimal among deterministic or fair algorithms.

Jesper W. Mikkelsen 18/34



Edge-k-Coloring on Trees

I Suppose that the input graph is a tree.

I For k ≥ 2, we show that:
I The competitive ratio of any fair algorithm is at least 2

√
k−2

2
√
k−1 .

I The competitive ratio of First-Fit is exactly k−1
k .

I First-Fit is optimal among deterministic or fair algorithms.

Jesper W. Mikkelsen 18/34



First-Fit vs Next-Fit on Trees

Jesper W. Mikkelsen 19/34



Charging technique for proving positive results

Three types of edges for a deterministic algorithm A:

I Double colored: Colored by both A and OPT.

I Single colored: Colored only by A.

I Rejected: Colored only by OPT.

We want to prove that A is C-competitive. Suppose that A earns a
dollar whenever it colors an edge. We need to show that A can buy
all of the edges colored by OPT, paying at least C for each.
Double colored edges will pay for themselves and therefore have a
surplus of 1− C.
Single colored edges will have a surplus of 1.

Jesper W. Mikkelsen 20/34



Charging technique for proving positive results

Three types of edges for a deterministic algorithm A:

I Double colored: Colored by both A and OPT.

I Single colored: Colored only by A.

I Rejected: Colored only by OPT.

We want to prove that A is C-competitive. Suppose that A earns a
dollar whenever it colors an edge. We need to show that A can buy
all of the edges colored by OPT, paying at least C for each.

Double colored edges will pay for themselves and therefore have a
surplus of 1− C.
Single colored edges will have a surplus of 1.

Jesper W. Mikkelsen 20/34



Charging technique for proving positive results

Three types of edges for a deterministic algorithm A:

I Double colored: Colored by both A and OPT.

I Single colored: Colored only by A.

I Rejected: Colored only by OPT.

We want to prove that A is C-competitive. Suppose that A earns a
dollar whenever it colors an edge. We need to show that A can buy
all of the edges colored by OPT, paying at least C for each.
Double colored edges will pay for themselves and therefore have a
surplus of 1− C.
Single colored edges will have a surplus of 1.

Jesper W. Mikkelsen 20/34



Fair Algorithm on Trees

Any fair algorithm F has a competitive ratio of at least C = 2
√
k−2

2
√
k−1 .

I colored edges have a surplus of 1− C = 1
2
√
k−1 .

I colored edges have a surplus of 1.

I edges need to receive a value of at least C from the colored
edges.

Jesper W. Mikkelsen 21/34



Fair Algorithm on Trees

Any fair algorithm F has a competitive ratio of at least C = 2
√
k−2

2
√
k−1 .

I Double colored edges have a surplus of 1− C = 1
2
√
k−1 .

I Single colored edges have a surplus of 1.

I Rejected edges need to receive a value of at least C from the
colored edges.

Jesper W. Mikkelsen 21/34



Fair Algorithm on Trees

Any fair algorithm F has a competitive ratio of at least C = 2
√
k−2

2
√
k−1 .

I Double colored edges have a surplus of 1− C = 1
2
√
k−1 .

I Single colored edges have a surplus of 1.

I Rejected edges need to receive a value of at least C from the
colored edges.

Jesper W. Mikkelsen 21/34



Fair Algorithm on Trees

Strategy for redistributing the surplus:

C = 2
√
k−2

2
√
k−1

e

remaining surplus

v

Jesper W. Mikkelsen 22/34



Fair Algorithm on Trees

What if a rejected edge e has only a few colored child edges?

e

u

v

Jesper W. Mikkelsen 23/34



Fair Algorithm on Trees

What if a rejected edge e has only a few colored child edges?

e

u

v

Jesper W. Mikkelsen 23/34



Fair Algorithm on Trees

What if a rejected edge e has only a few colored child edges?

e

u

v

Worst-case: Roughly
√
k colored child edges.

Jesper W. Mikkelsen 23/34



First-Fit on Trees

First-Fit has a competitive ratio of at least k−1
k on trees. Use the

same strategy as before with the following addition:

Jesper W. Mikkelsen 24/34



First-Fit on Trees

First-Fit has a competitive ratio of at least k−1
k on trees. Use the

same strategy as before with the following addition:

1

2

1
k

Jesper W. Mikkelsen 24/34



First-Fit on Trees

First-Fit has a competitive ratio of at least k−1
k on trees. Use the

same strategy as before with the following addition:

1

2

1
k

Jesper W. Mikkelsen 24/34



First-Fit on Trees
Example: k = 5, only double colored.

m(v) = 8
5 .

v transfers 4
5 to (w, v) and 2

5 to each of (v, x) and (v, y).

4 5

1 2 3 1 2 3

v

w

yx

4 5

1 2 3 1 2 3 1 2 3 1 2 3

v

w

yx

Jesper W. Mikkelsen 25/34



First-Fit on Trees
Example: k = 5, only double colored.

m(v) = 8
5 .

v transfers 4
5 to (w, v) and 2

5 to each of (v, x) and (v, y).

4 5

1 2 3 1 2 3 1 2 3 1 2 3

v

w

yx

Jesper W. Mikkelsen 25/34



First-Fit on Trees
Example: k = 5, only double colored.
m(v) = 8

5 .
v transfers 4

5 to (w, v) and 2
5 to each of (v, x) and (v, y).

4 5

1 2 3 1 2 3 1 2 3 1 2 3

v

w

yx

Jesper W. Mikkelsen 25/34



First-Fit on Trees

First-Fit has a competitive ratio of at least k−1
k on trees.

Step 1 Consider in turn all edges e = (v, u) ∈ Ec. Let c be the
color assigned to e by First-Fit and let e′ = (w, v) be the
parent edge of e.

Step 1.1 If e′ ∈ Ed and e′ has been colored with a color c′ > c,
then e transfers a value of 1

k to w.
Step 1.2 Any surplus remaining at e is transferred to v.

For each vertex v, let m(v) denote the value transferred to
v in step 1.

Step 2 Consider in turn all vertices v ∈ V .

Step 2.1 If v has a parent edge e′ and e′ ∈ Er, then v transfers

a value of min
{
m(v), k−1k

}
to e′.

Step 2.2 Any value remaining at v is distributed equally among

the child edges of v belonging to Er.

Jesper W. Mikkelsen 26/34



First-Fit on Trees

First-Fit has a competitive ratio of at least k−1
k on trees.

Step 1 Consider in turn all edges e = (v, u) ∈ Ec. Let c be the
color assigned to e by First-Fit and let e′ = (w, v) be the
parent edge of e.

Step 1.1 If e′ ∈ Ed and e′ has been colored with a color c′ > c,
then e transfers a value of 1

k to w.
Step 1.2 Any surplus remaining at e is transferred to v.

For each vertex v, let m(v) denote the value transferred to
v in step 1.

Step 2 Consider in turn all vertices v ∈ V .

Step 2.1 If v has a parent edge e′ and e′ ∈ Er, then v transfers

a value of min
{
m(v), k−1k

}
to e′.

Step 2.2 Any value remaining at v is distributed equally among

the child edges of v belonging to Er.

Jesper W. Mikkelsen 26/34



Negative result for Edge-k-Coloring of Trees

First-Fit has a competitive ratio of at most k−1
k .

k k k k

1 2 1

k k k k

1 2 1

First-Fit colors N(k − 2) +N = N(k − 1) and OPT colors Nk
edges.
A similar construction shows that no fair or deterministic algorithm
can do better than k−1

k .
Furthermore, one can show that the competitive ratio of Next-Fit is

no better than 2
√
k−2

2
√
k−1 when k is a square number.

Jesper W. Mikkelsen 27/34



Negative result for Edge-k-Coloring of Trees

First-Fit has a competitive ratio of at most k−1
k .

k k k k

1 2 1

First-Fit colors N(k − 2) +N = N(k − 1) and OPT colors Nk
edges.
A similar construction shows that no fair or deterministic algorithm
can do better than k−1

k .
Furthermore, one can show that the competitive ratio of Next-Fit is

no better than 2
√
k−2

2
√
k−1 when k is a square number.

Jesper W. Mikkelsen 27/34



Negative result for Edge-k-Coloring of Trees

First-Fit has a competitive ratio of at most k−1
k .

k k k k

1 2 1

First-Fit colors N(k − 2) +N = N(k − 1) and OPT colors Nk
edges.

A similar construction shows that no fair or deterministic algorithm
can do better than k−1

k .
Furthermore, one can show that the competitive ratio of Next-Fit is

no better than 2
√
k−2

2
√
k−1 when k is a square number.

Jesper W. Mikkelsen 27/34



Negative result for Edge-k-Coloring of Trees

First-Fit has a competitive ratio of at most k−1
k .

k k k k

1 2 1

First-Fit colors N(k − 2) +N = N(k − 1) and OPT colors Nk
edges.
A similar construction shows that no fair or deterministic algorithm
can do better than k−1

k .

Furthermore, one can show that the competitive ratio of Next-Fit is

no better than 2
√
k−2

2
√
k−1 when k is a square number.

Jesper W. Mikkelsen 27/34



Negative result for Edge-k-Coloring of Trees

First-Fit has a competitive ratio of at most k−1
k .

k k k k

1 2 1

First-Fit colors N(k − 2) +N = N(k − 1) and OPT colors Nk
edges.
A similar construction shows that no fair or deterministic algorithm
can do better than k−1

k .
Furthermore, one can show that the competitive ratio of Next-Fit is

no better than 2
√
k−2

2
√
k−1 when k is a square number.

Jesper W. Mikkelsen 27/34



Randomization on Trees

I First-Fit is optimal on trees among fair or deterministic
algorithms with a competitive ratio of k−1

k .

I Can a randomized algorithm do better than k−1
k ?

I Maybe, but not better than k
k+1 .

Jesper W. Mikkelsen 28/34



Randomization on Trees

I First-Fit is optimal on trees among fair or deterministic
algorithms with a competitive ratio of k−1

k .

I Can a randomized algorithm do better than k−1
k ?

I Maybe, but not better than k
k+1 .

Jesper W. Mikkelsen 28/34



If it looks like a tree...

I There exists several measures of how �tree-like� a graph is.

I Treewidth, arboricity, degeneracy, pseudoarboricity etc.

I The pseudoarboricity (PA) of G is the minimum t such that
the edges of G can be oriented to form a digraph where each
vertex has outdegree at most t.

I Trees have PA = 1. Planar graphs have PA at most 3.

I Graphs of bounded degree, treewidth, degeneracy or genus has
bounded PA.

Jesper W. Mikkelsen 29/34



If it looks like a tree...

I There exists several measures of how �tree-like� a graph is.

I Treewidth, arboricity, degeneracy, pseudoarboricity etc.

I The pseudoarboricity (PA) of G is the minimum t such that
the edges of G can be oriented to form a digraph where each
vertex has outdegree at most t.

I Trees have PA = 1. Planar graphs have PA at most 3.

I Graphs of bounded degree, treewidth, degeneracy or genus has
bounded PA.

Jesper W. Mikkelsen 29/34



If it looks like a tree...

I There exists several measures of how �tree-like� a graph is.

I Treewidth, arboricity, degeneracy, pseudoarboricity etc.

I The pseudoarboricity (PA) of G is the minimum t such that
the edges of G can be oriented to form a digraph where each
vertex has outdegree at most t.

I Trees have PA = 1. Planar graphs have PA at most 3.

I Graphs of bounded degree, treewidth, degeneracy or genus has
bounded PA.

Jesper W. Mikkelsen 29/34



If it looks like a tree...

I There exists several measures of how �tree-like� a graph is.

I Treewidth, arboricity, degeneracy, pseudoarboricity etc.

I The pseudoarboricity (PA) of G is the minimum t such that
the edges of G can be oriented to form a digraph where each
vertex has outdegree at most t.

I Trees have PA = 1. Planar graphs have PA at most 3.

I Graphs of bounded degree, treewidth, degeneracy or genus has
bounded PA.

Jesper W. Mikkelsen 29/34



If it looks like a tree...

I There exists several measures of how �tree-like� a graph is.

I Treewidth, arboricity, degeneracy, pseudoarboricity etc.

I The pseudoarboricity (PA) of G is the minimum t such that
the edges of G can be oriented to form a digraph where each
vertex has outdegree at most t.

I Trees have PA = 1. Planar graphs have PA at most 3.

I Graphs of bounded degree, treewidth, degeneracy or genus has
bounded PA.

Jesper W. Mikkelsen 29/34



Parameterized Competitive Ratio

I We parameterize the competitive ratio by the PA of the input
graph.

Theorem
Suppose that the input graph is k-colorable and has PA at most t.
If t ≤ 1

4k, then the competitive ratio of any fair algorithm is at least

2
√
k/t− 2

2
√
k/t− 1

.

The competitive ratio on k-colorable graph is also known as the
competitive ratio on accommodating sequences [Boyar, Larsen,
Nielsen '98].

Jesper W. Mikkelsen 30/34



Parameterized Competitive Ratio

I We parameterize the competitive ratio by the PA of the input
graph.

Theorem
Suppose that the input graph is k-colorable and has PA at most t.
If t ≤ 1

4k, then the competitive ratio of any fair algorithm is at least

2
√
k/t− 2

2
√
k/t− 1

.

The competitive ratio on k-colorable graph is also known as the
competitive ratio on accommodating sequences [Boyar, Larsen,
Nielsen '98].

Jesper W. Mikkelsen 30/34



Parameterized Competitive Ratio

I We parameterize the competitive ratio by the PA of the input
graph.

Theorem
Suppose that the input graph is k-colorable and has PA at most t.
If t ≤ 1

4k, then the competitive ratio of any fair algorithm is at least

2
√
k/t− 2

2
√
k/t− 1

.

The competitive ratio on k-colorable graph is also known as the
competitive ratio on accommodating sequences [Boyar, Larsen,
Nielsen '98].

Jesper W. Mikkelsen 30/34



Parameterized Competitive Ratio
A lower bound for any fair algorithm on planar graphs (PA ≤ 3).

Jesper W. Mikkelsen 31/34



Conclusion

I Randp is optimal on paths and better than any deterministic
algorithm.

I First-Fit is optimal among deterministic algorithms on paths
and trees.

I On tree-like graphs, any fair algorithm for online
Edge-k-Coloring performs well if it has a su�ciently large
number of colors.

Jesper W. Mikkelsen 32/34



Conclusion

I Randp is optimal on paths and better than any deterministic
algorithm.

I First-Fit is optimal among deterministic algorithms on paths
and trees.

I On tree-like graphs, any fair algorithm for online
Edge-k-Coloring performs well if it has a su�ciently large
number of colors.

Jesper W. Mikkelsen 32/34



Conclusion

I Randp is optimal on paths and better than any deterministic
algorithm.

I First-Fit is optimal among deterministic algorithms on paths
and trees.

I On tree-like graphs, any fair algorithm for online
Edge-k-Coloring performs well if it has a su�ciently large
number of colors.

Jesper W. Mikkelsen 32/34



Open Problems

I Find the optimal online algorithm for Edge-k-Coloring in
general and on other graph classes.

Is it possible to achieve a competitive ratio better than 2
√

3− 3 for
Edge-k-Coloring?
Does First-Fit have a competitive ratio better than 2

√
3− 3 for

Edge-k-Coloring?On bipartite graphs?

Jesper W. Mikkelsen 33/34



Open Problems

I Find the optimal online algorithm for Edge-k-Coloring in
general and on other graph classes.

Is it possible to achieve a competitive ratio better than 2
√

3− 3 for
Edge-k-Coloring?

Does First-Fit have a competitive ratio better than 2
√

3− 3 for
Edge-k-Coloring?On bipartite graphs?

Jesper W. Mikkelsen 33/34



Open Problems

I Find the optimal online algorithm for Edge-k-Coloring in
general and on other graph classes.

Is it possible to achieve a competitive ratio better than 2
√

3− 3 for
Edge-k-Coloring?
Does First-Fit have a competitive ratio better than 2

√
3− 3 for

Edge-k-Coloring?

On bipartite graphs?

Jesper W. Mikkelsen 33/34



Open Problems

I Find the optimal online algorithm for Edge-k-Coloring in
general and on other graph classes.

Is it possible to achieve a competitive ratio better than 2
√

3− 3 for
Edge-k-Coloring?
Does First-Fit have a competitive ratio better than 2

√
3− 3 for

Edge-k-Coloring?On bipartite graphs?

Jesper W. Mikkelsen 33/34



THANK YOU

Jesper W. Mikkelsen 34/34


	Online Algorithms

