Competitive Analysis of Multi-Objective Online Algorithms

Morten Tiedemann

Georg-August-Universität Göttingen Institute for Numerical and Applied Mathematics DFG RTG 1703

TOLA - ICALP 2014 Workshop, IT University of Copenhagen Denmark, July 7, 2014 Who gets your antique car?

Who gets your antique car?

Online Optimization

In online optimization, an algorithm has to make decisions based on a sequence of incoming bits of information without knowledge of future inputs.

Competitive Analysis

▶ An algorithm $_{\rm ALG}$ is called *c-competitive*, if for all sequences σ

$$\operatorname{ALG}(\sigma) \geq \frac{1}{c} \cdot \operatorname{OPT}(\sigma) + \alpha.$$

- ► The infimum over all values *c* such that ALG is *c*-competitive is called *the competitive ratio* of ALG.
- An algorithm is called *competitive* if it attains a "constant" competitive ratio.

Online Optimization (contd.)

Multi-Objective Optimization

Consider a multi-objective optimization problem \mathcal{P} for a given feasible set $\mathcal{X} \subseteq \mathbb{R}^n$, and objective vector $f : \mathcal{X} \mapsto \mathbb{R}^k$:

 $\mathcal{P} \max f(x)$ s.t. $x \in \mathcal{X}$

Multi-Objective Optimization

Consider a multi-objective optimization problem \mathcal{P} for a given feasible set $\mathcal{X} \subseteq \mathbb{R}^n$, and objective vector $f : \mathcal{X} \mapsto \mathbb{R}^k$:

 $\mathcal{P} \max f(x)$ s.t. $x \in \mathcal{X}$

Efficient Solutions

A feasible solution x̂ ∈ X is called *efficient* if there is no other x ∈ X such that f(x) ≤ f(x̂), where ≤ denotes a componentwise order, i.e., for x, y ∈ ℝⁿ, x ≤ y ⇔ x_i ≤ y_i, for i = 1,..., n, and x ≠ y.

Multi-Objective Optimization

Consider a multi-objective optimization problem \mathcal{P} for a given feasible set $\mathcal{X} \subseteq \mathbb{R}^n$, and objective vector $f : \mathcal{X} \mapsto \mathbb{R}^k$:

 $\mathcal{P} \max f(x)$ s.t. $x \in \mathcal{X}$

Efficient Solutions

- A feasible solution x̂ ∈ X is called *efficient* if there is no other x ∈ X such that f(x) ≤ f(x̂), where ≤ denotes a componentwise order, i.e., for x, y ∈ ℝⁿ, x ≤ y :⇔ x_i ≤ y_i, for i = 1,..., n, and x ≠ y.
- If \hat{x} is an efficient solution, $f(\hat{x})$ is called non-dominated point.

Multi-Objective Optimization (contd.)

Multi-objective (online) optimization problem ${\cal P}$

• set of inputs \mathcal{I}

Multi-objective (online) optimization problem $\ensuremath{\mathcal{P}}$

- ▶ set of inputs \mathcal{I}
- ▶ set of feasible outputs $\mathcal{X}(I) \in \mathbb{R}^n$ for $I \in \mathcal{I}$

- set of inputs \mathcal{I}
- set of feasible outputs $\mathcal{X}(I) \in \mathbb{R}^n$ for $I \in \mathcal{I}$
- objective function f given as $f : \mathcal{I} \times \mathcal{X} \mapsto \mathbb{R}^n_+$

- ▶ set of inputs \mathcal{I}
- set of feasible outputs $\mathcal{X}(I) \in \mathbb{R}^n$ for $I \in \mathcal{I}$
- objective function f given as $f : \mathcal{I} \times \mathcal{X} \mapsto \mathbb{R}^n_+$
- algorithm ALG
 - feasible solution $ALG[I] \in \mathcal{X}(I)$
 - ▶ associated objective ALG(I) = f(I, ALG[I])

- set of inputs \mathcal{I}
- set of feasible outputs $\mathcal{X}(I) \in \mathbb{R}^n$ for $I \in \mathcal{I}$
- objective function f given as $f : \mathcal{I} \times \mathcal{X} \mapsto \mathbb{R}^n_+$
- algorithm ALG
 - feasible solution $ALG[I] \in \mathcal{X}(I)$
 - ▶ associated objective ALG(I) = f(I, ALG[I])
- optimal algorithm OPT
 - $OPT[I] = {\mathbf{x} \in \mathcal{X}(I) | \mathbf{x} \text{ is an efficient solution to } \mathcal{P}}$
 - ▶ objective associated with $x \in OPT[I]$ is denoted by OPT(x)

Multi-Objective Approximation Algorithms

Multi-Objective Approximation Algorithms

 $\rho\text{-approximation of a solution } x$

 $f_i(x') \leq \rho \cdot f_i(x)$ for $i = 1, \ldots, n$

Multi-Objective Approximation Algorithms

 ρ -approximation of a solution x

$$f_i(x') \leq \rho \cdot f_i(x)$$
 for $i = 1, \dots, n$

ρ -approximation of a set of efficient solutions

for every feasible solution $x,\,X'$ contains a feasible solution x' that is a $\rho\text{-approximation of }x$

Multi-Objective Online Algorithms

c-competitive

A multi-objective online algorithm ALG is *c*-competitive if for all finite input sequences *I* there exists an efficient solution $\mathbf{x} \in \text{OPT}[I]$ such that $ALG(I) \leq c \cdot \text{OPT}(\mathbf{x}) + \alpha$, where $\alpha \in \mathbb{R}^n$ is a constant vector independent of *I*.

Multi-Objective Online Algorithms

c-competitive

A multi-objective online algorithm ALG is *c-competitive* if for all finite input sequences *I* there exists an efficient solution $\mathbf{x} \in \text{OPT}[I]$ such that $ALG(I) \leq c \cdot \text{OPT}(\mathbf{x}) + \alpha$, where $\alpha \in \mathbb{R}^n$ is a constant vector independent of *I*.

strongly c-competitive

A multi-objective online algorithm ALG is strongly c-competitive if for all finite input sequences I and all efficient solutions $\mathbf{x} \in \text{OPT}[I]$, $\text{ALG}(I) \leq c \cdot \text{OPT}(\mathbf{x}) + \alpha$, where $\alpha \in \mathbb{R}^n$ is a constant vector independent of I.

• request
$$r_t = \left(p_t, \, q_t\right)^{\intercal}$$
 in each time period $t = 1, \dots, T$

• request $r_t = (p_t, q_t)^{\mathsf{T}}$ in each time period $t = 1, \dots, T$

▶
$$p_t \in [p, P]$$
 where $0 , and $q_t \in [q, Q]$ where $0 < q \le Q$$

• request $r_t = (p_t, q_t)^{\mathsf{T}}$ in each time period $t = 1, \ldots, T$

▶
$$p_t \in [p,P]$$
 where $0 , and $q_t \in [q,Q]$ where $0 < q \le Q$$

• request $r_t = (p_t, q_t)^{\mathsf{T}}$ in each time period $t = 1, \ldots, T$

▶
$$p_t \in [p,P]$$
 where $0 , and $q_t \in [q,Q]$ where $0 < q \le Q$$

• request $r_t = (p_t, q_t)^{\mathsf{T}}$ in each time period $t = 1, \ldots, T$

▶
$$p_t \in [p,P]$$
 where $0 , and $q_t \in [q,Q]$ where $0 < q \le Q$$

• request $r_t = (p_t, q_t)^{\mathsf{T}}$ in each time period $t = 1, \ldots, T$

▶
$$p_t \in [p,P]$$
 where $0 , and $q_t \in [q,Q]$ where $0 < q \le Q$$

• request $r_t = (p_t, q_t)^{\mathsf{T}}$ in each time period $t = 1, \ldots, T$

▶
$$p_t \in [p,P]$$
 where $0 , and $q_t \in [q,Q]$ where $0 < q \le Q$$

• request $r_t = (p_t, q_t)^{\mathsf{T}}$ in each time period $t = 1, \ldots, T$

▶
$$p_t \in [p,P]$$
 where $0 , and $q_t \in [q,Q]$ where $0 < q \le Q$$

Randomization

Conclusion & Further Research

Conclusion & Further Research

- application to multi-objective versions of classical online problems
- relations between single- and multi-objective online optimization
- alternative concepts

The Multi-Objective k-Canadian Traveller Problem

