# Competitive Analysis of Multi-Objective Online Algorithms 

Morten Tiedemann

Ress<br>Georg-August-Universität Göttingen<br>Institute for Numerical and Applied Mathematics DFG RTG 1703

TOLA - ICALP 2014 Workshop, IT University of Copenhagen
Denmark, July 7, 2014

Who gets your antique car?

$\qquad$

## Who gets your antique car?



## Online Optimization

In online optimization, an algorithm has to make decisions based on a sequence of incoming bits of information without knowledge of future inputs.

## Competitive Analysis

- An algorithm ALG is called c-competitive, if for all sequences $\sigma$

$$
\operatorname{ALG}(\sigma) \geq \frac{1}{c} \cdot \operatorname{OPT}(\sigma)+\alpha
$$

- The infimum over all values $c$ such that ALG is c-competitive is called the competitive ratio of ALG.
- An algorithm is called competitive if it attains a "constant" competitive ratio.


## Online Optimization (contd.)




## Multi-Objective Optimization

Consider a multi-objective optimization problem $\mathcal{P}$ for a given feasible set $\mathcal{X} \subseteq \mathbb{R}^{n}$, and objective vector $f: \mathcal{X} \mapsto \mathbb{R}^{k}$ :

$$
\begin{aligned}
\mathcal{P} & \max f(x) \\
& \text { s.t. } x \in \mathcal{X}
\end{aligned}
$$

## Multi-Objective Optimization

Consider a multi-objective optimization problem $\mathcal{P}$ for a given feasible set $\mathcal{X} \subseteq \mathbb{R}^{n}$, and objective vector $f: \mathcal{X} \mapsto \mathbb{R}^{k}$ :

$$
\begin{aligned}
\mathcal{P} & \max f(x) \\
& \text { s.t. } x \in \mathcal{X}
\end{aligned}
$$

## Efficient Solutions

- A feasible solution $\hat{x} \in \mathcal{X}$ is called efficient if there is no other $x \in \mathcal{X}$ such that $f(x) \preceq f(\hat{x})$, where $\preceq$ denotes a componentwise order, i.e., for $x, y \in \mathbb{R}^{n}, x \preceq y: \Leftrightarrow x_{i} \leq y_{i}$, for $i=1, \ldots, n$, and $x \neq y$.


## Multi-Objective Optimization

Consider a multi-objective optimization problem $\mathcal{P}$ for a given feasible set $\mathcal{X} \subseteq \mathbb{R}^{n}$, and objective vector $f: \mathcal{X} \mapsto \mathbb{R}^{k}$ :

$$
\begin{aligned}
\mathcal{P} & \max f(x) \\
& \text { s.t. } x \in \mathcal{X}
\end{aligned}
$$

## Efficient Solutions

- A feasible solution $\hat{x} \in \mathcal{X}$ is called efficient if there is no other $x \in \mathcal{X}$ such that $f(x) \preceq f(\hat{x})$, where $\preceq$ denotes a componentwise order, i.e., for $x, y \in \mathbb{R}^{n}, x \preceq y: \Leftrightarrow x_{i} \leq y_{i}$, for $i=1, \ldots, n$, and $x \neq y$.
- If $\hat{x}$ is an efficient solution, $f(\hat{x})$ is called non-dominated point.


## Multi-Objective Optimization (contd.)



Multi-Objective Online Problem

## Multi-Objective Online Problem

Multi-objective (online) optimization problem $\mathcal{P}$

## Multi-Objective Online Problem

Multi-objective (online) optimization problem $\mathcal{P}$

- set of inputs $\mathcal{I}$


## Multi-Objective Online Problem

Multi-objective (online) optimization problem $\mathcal{P}$

- set of inputs $\mathcal{I}$
- set of feasible outputs $\mathcal{X}(I) \in \mathbb{R}^{n}$ for $I \in \mathcal{I}$


## Multi-Objective Online Problem

Multi-objective (online) optimization problem $\mathcal{P}$

- set of inputs $\mathcal{I}$
- set of feasible outputs $\mathcal{X}(I) \in \mathbb{R}^{n}$ for $I \in \mathcal{I}$
- objective function $f$ given as $f: \mathcal{I} \times \mathcal{X} \mapsto \mathbb{R}_{+}^{n}$


## Multi-Objective Online Problem

Multi-objective (online) optimization problem $\mathcal{P}$

- set of inputs $\mathcal{I}$
- set of feasible outputs $\mathcal{X}(I) \in \mathbb{R}^{n}$ for $I \in \mathcal{I}$
- objective function $f$ given as $f: \mathcal{I} \times \mathcal{X} \mapsto \mathbb{R}_{+}^{n}$
- algorithm ALG
- feasible solution aLG[I] $\mathcal{X}(I)$
- associated objective $\operatorname{ALG}(I)=f(I, \operatorname{ALG}[I])$


## Multi-Objective Online Problem

Multi-objective (online) optimization problem $\mathcal{P}$

- set of inputs $\mathcal{I}$
- set of feasible outputs $\mathcal{X}(I) \in \mathbb{R}^{n}$ for $I \in \mathcal{I}$
- objective function $f$ given as $f: \mathcal{I} \times \mathcal{X} \mapsto \mathbb{R}_{+}^{n}$
- algorithm ALG
- feasible solution aLG[I] $\mathcal{X}(I)$
- associated objective $\operatorname{ALG}(I)=f(I, \operatorname{ALG}[I])$
- optimal algorithm OPT
- $\operatorname{OPT}[I]=\{\mathbf{x} \in \mathcal{X}(I) \mid \mathbf{x}$ is an efficient solution to $\mathcal{P}\}$
- objective associated with $\mathbf{x} \in \mathrm{OPT}[I]$ is denoted by $\operatorname{OPT}(\mathbf{x})$

Multi-Objective Approximation Algorithms

## Multi-Objective Approximation Algorithms

$\rho$-approximation of a solution $x$

$$
f_{i}\left(x^{\prime}\right) \leq \rho \cdot f_{i}(x) \text { for } i=1, \ldots, n
$$

## Multi-Objective Approximation Algorithms

$\rho$-approximation of a solution $x$

$$
f_{i}\left(x^{\prime}\right) \leq \rho \cdot f_{i}(x) \text { for } i=1, \ldots, n
$$

$\rho$-approximation of a set of efficient solutions for every feasible solution $x, X^{\prime}$ contains a feasible solution $x^{\prime}$ that is a $\rho$-approximation of $x$

## Multi-Objective Online Algorithms

## c-competitive

A multi-objective online algorithm ALG is c-competitive if for all finite input sequences $/$ there exists an efficient solution $\mathrm{x} \in$ OPT $[/]$ such that $A L G(I) \leqq c \cdot \operatorname{OPT}(\mathbf{x})+\alpha$, where $\alpha \in \mathbb{R}^{n}$ is a constant vector independent of $I$.

## Multi-Objective Online Algorithms

## C-competitive

A multi-objective online algorithm ALG is c-competitive if for all finite input sequences $/$ there exists an efficient solution $\mathrm{x} \in \mathrm{OPT}[I]$ such that $A L G(I) \leqq c \cdot \operatorname{OPT}(\mathbf{x})+\alpha$, where $\alpha \in \mathbb{R}^{n}$ is a constant vector independent of $I$.

## strongly c-competitive

A multi-objective online algorithm ALG is strongly c-competitive if for all finite input sequences $I$ and all efficient solutions $x \in$ OPT $[I]$,
$\operatorname{ALG}(I) \leqq c \cdot \operatorname{OPT}(\mathbf{x})+\alpha$, where $\alpha \in \mathbb{R}^{n}$ is a constant vector independent of $I$.

## Bi-Objective Online Search

## Bi-Objective Online Search

- request $r_{t}=\left(p_{t}, q_{t}\right)^{\top}$ in each time period $t=1, \ldots, T$


## Bi-Objective Online Search

- request $r_{t}=\left(p_{t}, q_{t}\right)^{\top}$ in each time period $t=1, \ldots, T$
- $p_{t} \in[p, P]$ where $0<p \leq P$, and $q_{t} \in[q, Q]$ where $0<q \leq Q$


## Bi-Objective Online Search

- request $r_{t}=\left(p_{t}, q_{t}\right)^{\top}$ in each time period $t=1, \ldots, T$
- $p_{t} \in[p, P]$ where $0<p \leq P$, and $q_{t} \in[q, Q]$ where $0<q \leq Q$

Reservation Price Policy


## Bi-Objective Online Search

- request $r_{t}=\left(p_{t}, q_{t}\right)^{\top}$ in each time period $t=1, \ldots, T$
- $p_{t} \in[p, P]$ where $0<p \leq P$, and $q_{t} \in[q, Q]$ where $0<q \leq Q$

Reservation Price Policy


$$
\begin{aligned}
& \text { for } t=1, \ldots \text { do } \\
& \text { end } \begin{array}{r}
\text { Accept a request } r_{t} \text { if } \\
p_{t} \geq p^{\star} \text { or } q_{t} \geq q^{\star}
\end{array} \\
& c=\max \left\{\frac{P}{p}, \frac{Q}{q^{\star}}, \frac{P}{p^{\star}}, \frac{Q}{q}\right\}
\end{aligned}
$$

## Bi-Objective Online Search

- request $r_{t}=\left(p_{t}, q_{t}\right)^{\top}$ in each time period $t=1, \ldots, T$
- $p_{t} \in[p, P]$ where $0<p \leq P$, and $q_{t} \in[q, Q]$ where $0<q \leq Q$

Reservation Price Policy


## Bi-Objective Online Search

- request $r_{t}=\left(p_{t}, q_{t}\right)^{\top}$ in each time period $t=1, \ldots, T$
- $p_{t} \in[p, P]$ where $0<p \leq P$, and $q_{t} \in[q, Q]$ where $0<q \leq Q$

Reservation Price Policy


$$
\begin{aligned}
& \text { for } t=1, \ldots \text { do } \\
& \text { end } \quad \begin{array}{r}
\text { Accept a request } r_{t} \text { if } \\
p_{t} \geq p^{\star} \text { and } q_{t} \geq q^{\star}
\end{array} \\
& c=\max \left\{\frac{P}{p}, \frac{q^{\star}}{q}, \frac{p^{\star}}{p}, \frac{Q}{q}\right\}
\end{aligned}
$$

## Bi-Objective Online Search

- request $r_{t}=\left(p_{t}, q_{t}\right)^{\top}$ in each time period $t=1, \ldots, T$
- $p_{t} \in[p, P]$ where $0<p \leq P$, and $q_{t} \in[q, Q]$ where $0<q \leq Q$


## Reservation Price Policy



## Bi-Objective Online Search

- request $r_{t}=\left(p_{t}, q_{t}\right)^{\top}$ in each time period $t=1, \ldots, T$
- $p_{t} \in[p, P]$ where $0<p \leq P$, and $q_{t} \in[q, Q]$ where $0<q \leq Q$


## Reservation Price Policy



$$
\begin{aligned}
& \text { for } t=1, \ldots \text { do } \\
& \text { end } \\
& p_{t} \cdot q_{t} \geq z^{\star} \\
& \qquad c=\sqrt{\frac{P Q}{p q}}
\end{aligned}
$$

## Randomization



## Conclusion \& Further Research




## Conclusion \& Further Research



- application to multi-objective versions of classical online problems
- relations between single- and multi-objective online optimization
- alternative concepts

The Multi-Objective $k$-Canadian Traveller Problem


