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Online Optimization

In online optimization, an algorithm has to make decisions
based on a sequence of incoming bits of information

without knowledge of future inputs.

Competitive Analysis

I An algorithm alg is called c-competitive, if for all sequences σ

alg(σ) ≥ 1
c
· opt(σ) + α.

I The infimum over all values c such that alg is c-competitive is called
the competitive ratio of alg.

I An algorithm is called competitive if it attains a “constant” competitive
ratio.
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Online Optimization (contd.)
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Multi-Objective Optimization

Consider a multi-objective optimization problem P for a given feasible set
X ⊆ Rn, and objective vector f : X 7→ Rk :

P max f (x)

s.t. x ∈ X

Efficient Solutions

I A feasible solution x̂ ∈ X is called efficient if there is no other x ∈ X
such that f (x) � f (x̂), where � denotes a componentwise order, i.e., for
x , y ∈ Rn, x � y :⇔ xi ≤ yi , for i = 1, . . . , n, and x 6= y .

I If x̂ is an efficient solution, f (x̂) is called non-dominated point.
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Multi-Objective Optimization (contd.)
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Multi-Objective Online Problem

Multi-objective (online) optimization problem P
I set of inputs I
I set of feasible outputs X (I ) ∈ Rn for I ∈ I
I objective function f given as f : I × X 7→ Rn

+

I algorithm alg

I feasible solution alg[I ] ∈ X (I )
I associated objective alg(I ) = f (I ,alg[I ])

I optimal algorithm opt

I opt[I ] = {x ∈ X (I ) | x is an efficient solution to P}
I objective associated with x ∈ opt[I ] is denoted by opt(x)
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Multi-Objective Approximation Algorithms

ρ-approximation of a solution x

fi (x
′) ≤ ρ · fi (x) for i = 1, . . . , n

ρ-approximation of a set of efficient solutions
for every feasible solution x , X ′ contains a feasible solution x ′ that is a
ρ-approximation of x
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Multi-Objective Online Algorithms

c-competitive
A multi-objective online algorithm alg is c-competitive if for all finite input
sequences I there exists an efficient solution x ∈ opt[I ] such that
ALG(I ) 5 c ·opt(x)+α, where α ∈ Rn is a constant vector independent of I .

strongly c-competitive
A multi-objective online algorithm alg is strongly c-competitive if for all
finite input sequences I and all efficient solutions x ∈ opt[I ],
alg(I ) 5 c · opt(x) + α, where α ∈ Rn is a constant vector independent of I .
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Bi-Objective Online Search

I request rt =
(
pt , qt

)ᵀ in each time period t = 1, . . . ,T
I pt ∈ [p,P] where 0 < p ≤ P, and qt ∈ [q,Q] where 0 < q ≤ Q



10/12

Bi-Objective Online Search
I request rt =

(
pt , qt

)ᵀ in each time period t = 1, . . . ,T

I pt ∈ [p,P] where 0 < p ≤ P, and qt ∈ [q,Q] where 0 < q ≤ Q



10/12

Bi-Objective Online Search
I request rt =

(
pt , qt

)ᵀ in each time period t = 1, . . . ,T
I pt ∈ [p,P] where 0 < p ≤ P, and qt ∈ [q,Q] where 0 < q ≤ Q



10/12

Bi-Objective Online Search
I request rt =

(
pt , qt

)ᵀ in each time period t = 1, . . . ,T
I pt ∈ [p,P] where 0 < p ≤ P, and qt ∈ [q,Q] where 0 < q ≤ Q

Reservation Price Policy

pt

qt

p P

q

Q

q⋆

p⋆

for t = 1, . . . do
Accept a request rt if

pt ≥ p?or qt ≥ q?

end

c = max
{
P

p
,
Q

q?
,
P

p?
,
Q

q

}



10/12

Bi-Objective Online Search
I request rt =

(
pt , qt

)ᵀ in each time period t = 1, . . . ,T
I pt ∈ [p,P] where 0 < p ≤ P, and qt ∈ [q,Q] where 0 < q ≤ Q

Reservation Price Policy

pt

qt

p P

q

Q

q⋆

p⋆

for t = 1, . . . do
Accept a request rt if

pt ≥ p?or qt ≥ q?

end

c = max
{
P

p
,
Q

q?
,
P

p?
,
Q

q

}



10/12

Bi-Objective Online Search
I request rt =

(
pt , qt

)ᵀ in each time period t = 1, . . . ,T
I pt ∈ [p,P] where 0 < p ≤ P, and qt ∈ [q,Q] where 0 < q ≤ Q

Reservation Price Policy

pt

qt

p P

q

Q

q⋆

p⋆

for t = 1, . . . do
Accept a request rt if

pt ≥ p?and qt ≥ q?

end

c = max
{
P

p
,
q?

q
,
p?

p
,
Q

q

}



10/12

Bi-Objective Online Search
I request rt =

(
pt , qt

)ᵀ in each time period t = 1, . . . ,T
I pt ∈ [p,P] where 0 < p ≤ P, and qt ∈ [q,Q] where 0 < q ≤ Q

Reservation Price Policy

pt

qt

p P

q

Q

q⋆

p⋆

for t = 1, . . . do
Accept a request rt if

pt ≥ p?and qt ≥ q?

end

c = max
{
P

p
,
q?

q
,
p?

p
,
Q

q

}



10/12

Bi-Objective Online Search
I request rt =

(
pt , qt

)ᵀ in each time period t = 1, . . . ,T
I pt ∈ [p,P] where 0 < p ≤ P, and qt ∈ [q,Q] where 0 < q ≤ Q

Reservation Price Policy

pt

qt

p P

q

Q

z⋆

Q
z⋆

q

q⋆

p⋆

pt · qt = z⋆

for t = 1, . . . do
Accept a request rt if

pt · qt ≥ z?

end

c =

√
PQ

pq



10/12

Bi-Objective Online Search
I request rt =

(
pt , qt

)ᵀ in each time period t = 1, . . . ,T
I pt ∈ [p,P] where 0 < p ≤ P, and qt ∈ [q,Q] where 0 < q ≤ Q

Reservation Price Policy

pt

qt

p P

q

Q

z⋆

Q
z⋆

q

q⋆

p⋆

pt · qt = z⋆

for t = 1, . . . do
Accept a request rt if

pt · qt ≥ z?

end

c =

√
PQ

pq



11/12

Randomization

p1t

p2t

m12
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Conclusion & Further Research
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I application to multi-objective versions of classical online problems
I relations between single- and multi-objective online optimization
I alternative concepts
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The Multi-Objective k-Canadian Traveller Problem
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