Online Colored Bin Packing

Martin Böhm, Jiří Sgall, Pavel Veselý

Computer Science Institute of Charles University, Prague, Czech Republic.

Trends in Online Algorithms 2014, July 7

Image: A matrix and a matrix

• Bin Packing

- Input: items of sizes in [0,1]
- Goal: pack items into the minimum number of unit capacity bins

3

イロト イヨト イヨト

- Bin Packing
 - Input: items of sizes in [0,1]
 - Goal: pack items into the minimum number of unit capacity bins
- Colored Bin Packing
 - Each item has a color
 - Two items of the same color cannot be one on the other
 - Defined by [Balogh et al. '12] for two colors as BLACK AND WHITE BIN PACKING

- Bin Packing
 - Input: items of sizes in [0,1]
 - Goal: pack items into the minimum number of unit capacity bins
- Colored Bin Packing
 - Each item has a color
 - Two items of the same color cannot be one on the other
 - Defined by [Balogh et al. '12] for two colors as BLACK AND WHITE BIN PACKING

- Bin Packing
 - Input: items of sizes in [0,1]
 - Goal: pack items into the minimum number of unit capacity bins
- Colored Bin Packing
 - Each item has a color
 - Two items of the same color cannot be one on the other
 - Defined by [Balogh et al. '12] for two colors as BLACK AND WHITE BIN PACKING

- Bin Packing
 - Input: items of sizes in [0,1]
 - Goal: pack items into the minimum number of unit capacity bins
- Colored Bin Packing
 - Each item has a color
 - Two items of the same color cannot be one on the other
 - Defined by [Balogh et al. '12] for two colors as BLACK AND WHITE BIN PACKING

- Bin Packing
 - Input: items of sizes in [0,1]
 - Goal: pack items into the minimum number of unit capacity bins
- Colored Bin Packing
 - Each item has a color
 - Two items of the same color cannot be one on the other
 - Defined by [Balogh et al. '12] for two colors as BLACK AND WHITE BIN PACKING

TOLA 2014, July 7 2 / 17

Offline vs. restricted offline settings

• Offline

- Items are given in advance
- We can pack in any order

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Offline vs. restricted offline settings

• Offline

- Items are given in advance
- We can pack in any order
- Restricted offline
 - Items are given as a sequence
 - We have to pack them in the given order
 - Optimum can differ from the unrestricted offline case:
 - *n* blue and then *n* red, all of size zero

Competitive ratio of an online algorithm

- For an input list of items L:
 - ALG(L) = # of bins used by ALG
 - *OPT*(*L*) = restricted offline optimum
- ALG is absolutely r-competitive if:
 - for any L it holds $ALG(L) \leq r \cdot OPT(L)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Competitive ratio of an online algorithm

- For an input list of items L:
 - ALG(L) = # of bins used by ALG
 - *OPT*(*L*) = restricted offline optimum
- ALG is absolutely r-competitive if:
 - for any L it holds $ALG(L) \leq r \cdot OPT(L)$
- ALG is asymptotically r-competitive if:
 - $ALG(L) \leq r \cdot OPT(L) + o(OPT(L))$

イロト 人間ト イヨト イヨト

Competitive ratio of an online algorithm

- For an input list of items L:
 - ALG(L) = # of bins used by ALG
 - *OPT*(*L*) = restricted offline optimum
- ALG is absolutely r-competitive if:
 - for any L it holds $ALG(L) \leq r \cdot OPT(L)$
- ALG is asymptotically r-competitive if:
 - $ALG(L) \leq r \cdot OPT(L) + o(OPT(L))$
- ALG has the competitive ratio r if
 - it is *r*-competitive
 - it is not r'-competitive for r' < r

< 4 ∰ > <

- Level of a bin = cumulative size of all items in the bin
- *c*-item = an item of color *c*
- *c*-bin = a bin with a *c*-item on the top
- Example: red bin:

3

(日) (同) (三) (三)

Lower bound on the restricted offline optimum

- Sum of items sizes LB₁
- Maximal color discrepancy LB₂
 - $\bullet~$ 10 white, 2 red and 10 white must be packed into \geq 18 bins

イロト イポト イヨト イヨト

Lower bound on the restricted offline optimum

- Sum of items sizes LB₁
- Maximal color discrepancy LB₂
 - 10 white, 2 red and 10 white must be packed into \geq 18 bins
 - Discrepancy for a color *c* on an interval of the input sequence:

of c-items-# of items of other colors

Any Fit algorithms

• Opens a bin if it is really necessary

Any Fit algorithms

- Opens a bin if it is really necessary
- Main variants:
 - First Fit (FF): chooses the *first* bin in which an incoming item fits
 - Best Fit (BF): chooses the bin with the highest level
 - Worst Fit (WF): chooses the bin with the *lowest* level

Any Fit algorithms

- Opens a bin if it is really necessary
- Main variants:
 - First Fit (FF): chooses the *first* bin in which an incoming item fits
 - Best Fit (BF): chooses the bin with the highest level
 - Worst Fit (WF): chooses the bin with the *lowest* level

• We study both general and parametric cases

• Parametric case: for a real $d \ge 2$ the items have size at most $\frac{1}{d}$

Böhm, Sgall, Veselý

TOLA 2014, July 7 7 / 17

Black and White Bin Packing

- [Balogh et al. '12 and '13], [Dósa and Epstein '14]
 - Lower bound of 2 on competitiveness of all online algorithms

3

イロト イポト イヨト イヨト

Black and White Bin Packing

• [Balogh et al. '12 and '13], [Dósa and Epstein '14]

- Lower bound of 2 on competitiveness of all online algorithms
- Competitiveness of algorithms previous results:

Algorithm	Lower bound	Upper bound
First Fit	3	5
Best Fit	3	5
Worst Fit [parametric case]	$3 \left[1 + \frac{d}{d-1}\right]$	5
Pseudo [parametric case]	$3 \left[1 + \frac{d}{d-1}\right]$	$3 \left[1 + \frac{d}{d-1}\right]$

イロト 不得下 イヨト イヨト 二日

Black and White Bin Packing

• [Balogh et al. '12 and '13], [Dósa and Epstein '14]

- Lower bound of 2 on competitiveness of all online algorithms
- Competitiveness of algorithms previous and our results:

Algorithm	Lower bound	Upper bound
First Fit	3	<mark>3</mark> 5
Best Fit	3	<mark>3</mark> 5
Worst Fit [parametric case]	$3 \left[1 + \frac{d}{d-1}\right]$	$3 \left[1 + \frac{d}{d-1}\right] 5$
Pseudo [parametric case]	$3 \left[1 + \frac{d}{d-1}\right]$	$3 \left[1 + \frac{d}{d-1}\right]$

Our results

- Any Fit algorithms are absolutely 3-competitive
- Worst Fit for items of size $\leq \frac{1}{d}$ has ratio exactly $1 + \frac{d}{d-1}$

イロト イポト イヨト イヨト 二日

• [Dósa and Epstein '14] independently of us

- Lower bound of 2 on competitiveness of all online algorithms
- For zero-size items
 - Asymptotic lower bound 1.5
 - 2-competitive algorithm
- 4-competitive algorithm for items of any size

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• [Dósa and Epstein '14] independently of us

- Lower bound of 2 on competitiveness of all online algorithms
- For zero-size items
 - Asymptotic lower bound 1.5
 - 2-competitive algorithm
- 4-competitive algorithm for items of any size
- Our results
 - For zero-size items
 - Restricted offline optimum = maximal color discrepancy

イロト イ理ト イヨト イヨト

• [Dósa and Epstein '14] independently of us

- Lower bound of 2 on competitiveness of all online algorithms
- For zero-size items
 - Asymptotic lower bound 1.5
 - 2-competitive algorithm
- 4-competitive algorithm for items of any size
- Our results
 - For zero-size items
 - Restricted offline optimum = maximal color discrepancy
 - Optimal 1.5-competitive algorithm uses at most [1.5 · OPT] bins
 - Lower bound of $\left\lceil 1.5 \cdot \textit{OPT} \right\rceil$ for all online algorithms
 - 3.5-competitive algorithm for items of any size

• $(1.5 + \frac{d}{d-1})$ -competitive in the parametric case

- Let *n* be the optimum
- The adversary sends the instance in phases
- In each phase:
 - # of black bins increases,
 - or we get $\lceil 1.5 \cdot n \rceil$ bins
- Example for *n* = 4:

3

- ∢ /⊐) - ∢

- Let *n* be the optimum
- The adversary sends the instance in phases
- In each phase:
 - # of black bins increases,
 - or we get $\lceil 1.5 \cdot n \rceil$ bins
- Example for *n* = 4:

- Let *n* be the optimum
- The adversary sends the instance in phases
- In each phase:
 - # of black bins increases,
 - or we get $\lceil 1.5 \cdot n \rceil$ bins
- Example for *n* = 4:

- Let *n* be the optimum
- The adversary sends the instance in phases
- In each phase:
 - # of black bins increases,
 - or we get $\lceil 1.5 \cdot n \rceil$ bins
- Example for *n* = 4:

- Let *n* be the optimum
- The adversary sends the instance in phases
- In each phase:
 - # of black bins increases,
 - or we get $\lceil 1.5 \cdot n \rceil$ bins
- Example for *n* = 4:

- Let *n* be the optimum
- The adversary sends the instance in phases
- In each phase:
 - # of black bins increases,
 - or we get $\lceil 1.5 \cdot n \rceil$ bins
- Example for *n* = 4:

- Let *n* be the optimum
- The adversary sends the instance in phases
- In each phase:
 - # of black bins increases,
 - or we get $\lceil 1.5 \cdot n \rceil$ bins
- Example for n = 4:

• A little bit more complicated for an odd n to get $\lceil 1.5 \cdot n \rceil$ bins

10 / 17

- Balancing Any Fit (BAF)
- Uses at most $\lceil 1.5 \cdot OPT \rceil$ bins
- $N_c = \#$ of *c*-bins
- Current discrepancy of a color c
 - $CD_c = \max$. discrepancy on an interval ending just before the incoming item

イロト 不得下 イヨト イヨト 二日

- Balancing Any Fit (BAF)
- Uses at most $\lceil 1.5 \cdot OPT \rceil$ bins
- $N_c = \#$ of *c*-bins
- Current discrepancy of a color c
 - $CD_c = \max$. discrepancy on an interval ending just before the incoming item
- Main invariant for a color c
 - $N_c \leq CD_c + \lceil 0.5 \cdot OPT \rceil$

イロト 不得下 イヨト イヨト 二日

- Balancing Any Fit (BAF)
- Uses at most $\lceil 1.5 \cdot OPT \rceil$ bins
- $N_c = \#$ of *c*-bins
- Current discrepancy of a color c
 - $CD_c = \max$. discrepancy on an interval ending just before the incoming item
- Main invariant for a color c
 - $N_c \leq CD_c + \lceil 0.5 \cdot OPT \rceil$
- BAF mostly puts an incoming *c*-item into a bin of the most frequent other color

イロト イポト イヨト イヨト 二日

- Balancing Any Fit (BAF)
- Uses at most $\lceil 1.5 \cdot OPT \rceil$ bins
- $N_c = \#$ of *c*-bins
- Current discrepancy of a color c
 - $CD_c = \max$. discrepancy on an interval ending just before the incoming item
- Main invariant for a color c

• $N_c \leq CD_c + \lceil 0.5 \cdot OPT \rceil$

- BAF mostly puts an incoming *c*-item into a bin of the most frequent other color
 - Exception: two colors have more than $[0.5 \cdot OPT]$ bins

イロト イポト イヨト イヨト 二日

BAF: two colors have more than $[0.5 \cdot OPT]$ bins

- Let these colors be black and yellow
- Example with OPT = 5 and $\lceil 1.5 \cdot OPT \rceil = 8$
 - Suppose that $\textit{CD}_{\rm black}=1$ and $\textit{CD}_{\rm yellow}=1$
 - Thus $N_{
 m b} = CD_{
 m b} + \lceil 0.5 \cdot OPT \rceil$ and $N_{
 m y} = CD_{
 m y} + \lceil 0.5 \cdot OPT \rceil$

BAF: two colors have more than $[0.5 \cdot OPT]$ bins

- Let these colors be black and yellow
- Example with OPT = 5 and $\lceil 1.5 \cdot OPT \rceil = 8$
 - Suppose that $\textit{CD}_{\mathrm{black}} = 1$ and $\textit{CD}_{\mathrm{yellow}} = 1$
 - Thus $N_{
 m b} = CD_{
 m b} + \lceil 0.5 \cdot OPT \rceil$ and $N_{
 m y} = CD_{
 m y} + \lceil 0.5 \cdot OPT \rceil$

- We need to prove that
 - $N_{
 m b} < CD_{
 m b} + \left\lceil 0.5 \cdot OPT \right\rceil$,
 - or $\mathit{N}_{\mathrm{y}} < \mathit{CD}_{\mathrm{y}} + \left\lceil 0.5 \cdot \mathit{OPT}
 ight
 ceil$

- First Fit, Best Fit and Worst Fit
 - Bad behavior for at least three colors

- First Fit, Best Fit and Worst Fit
 - Bad behavior for at least three colors
- Pseudo: 3.5-competitive algorithm for items of any size
 - $\bullet~$ Uses pseudo bins = bins of unlimited capacity
 - Divides them into unit capacity bins

3

- First Fit, Best Fit and Worst Fit
 - Bad behavior for at least three colors
- Pseudo: 3.5-competitive algorithm for items of any size
 - Uses pseudo bins = bins of unlimited capacity
 - Divides them into unit capacity bins
 - Put an incoming item into a pseudo bin using BAF
 - Apply Next Fit in the pseudo bin

- Pseudo: 3.5-competitive algorithm for items of any size
 - Uses pseudo bins = bins of unlimited capacity
 - Divides them into unit capacity bins
 - Put an incoming item into a pseudo bin using BAF
 - Apply Next Fit in the pseudo bin

- Proof of 3.5-competitiveness
 - We pair all bins except one in each pseudo bin
 - Each pair has total volume of more than 1
 - # of paired bins is at most $2\cdot \textit{OPT}-1$
 - $\# \mbox{ of non-paired bins} \leq \# \mbox{ of pseudo bins}$
 - BAF uses at most $\lceil 1.5 \cdot \textit{OPT} \rceil$ bins
 - Altogether at most 3.5 · OPT bins

- Pseudo: 3.5-competitive algorithm for items of any size
 - Uses pseudo bins = bins of unlimited capacity
 - Divides them into unit capacity bins
 - Put an incoming item into a pseudo bin using BAF
 - Apply Next Fit in the pseudo bin

- Proof of 3.5-competitiveness
 - We pair all bins except one in each pseudo bin
 - Each pair has total volume of more than 1
 - # of paired bins is at most $2\cdot \textit{OPT}-1$
 - # of non-paired bins \leq # of pseudo bins
 - BAF uses at most $\lceil 1.5 \cdot OPT \rceil$ bins
 - Altogether at most $3.5 \cdot OPT$ bins
- In the parametric case $(1.5 + \frac{d}{d-1})$ -competitive

Worst Fit in the parametric case for two colors

- Worst Fit is $(1 + \frac{d}{d-1})$ -competitive
 - If all items have size $\leq \frac{1}{d}$ for a real $d \geq 2$
- Idea of the proof:
 - Big bins = bins with level $\geq \frac{d-1}{d}$
 - # of big bins is at most $\frac{d}{d-1} \cdot LB_1$
 - Small bins = bins with level $< \frac{d-1}{d}$
 - We bound # of small bins from above by LB_2

Any Fit algorithms for two colors

- Any algorithm in the Any Fit family is absolutely 3-competitive
 - Similar proof, but more complicated
 - Big bins have level ≥ 0.5 and small bins < 0.5
 - # of small bins cannot be bounded by color discrepancy LB_2

- Any algorithm in the Any Fit family is absolutely 3-competitive
 - Similar proof, but more complicated
 - Big bins have level ≥ 0.5 and small bins < 0.5
 - # of small bins cannot be bounded by color discrepancy LB_2
 - We assign bins into chains
 - $\bullet~$ Sequences of bins where the average level is ≥ 0.5
 - We bound the number of bins not in chains by LB_2

イロト 不得下 イヨト イヨト 二日

Conclusions

- For at least three colors
 - \bullet We have solved $\operatorname{Colored}$ Bin $\operatorname{Packing}$ for zero-size items
 - For items of any size we have 3.5-competitive algorithm
 - We have recently improved the lower bound to 2.5
- For two colors
 - We improved the upper bound on competitiveness of Any Fit algorithms
 - Tight for First Fit, Best Fit and Worst Fit

- Design a better than 3.5-competitive algorithm
- Or improve the lower bound of 2.5
- Prove that no Any Fit algorithm can be better than 3-competitive for two colors

- 32

- Design a better than 3.5-competitive algorithm
- Or improve the lower bound of 2.5
- Prove that no Any Fit algorithm can be better than 3-competitive for two colors
 - Or find a better one

Thank you for your attention