Online Colored Bin Packing

Martin Böhm, Jiří Sgall, Pavel Veselý

Computer Science Institute of Charles University, Prague, Czech Republic.
Trends in Online Algorithms 2014, July 7

Colored Bin Packing

- Bin Packing
- Input: items of sizes in $[0,1]$
- Goal: pack items into the minimum number of unit capacity bins

Colored Bin Packing

- Bin Packing
- Input: items of sizes in $[0,1]$
- Goal: pack items into the minimum number of unit capacity bins
- Colored Bin Packing
- Each item has a color
- Two items of the same color cannot be one on the other
- Defined by [Balogh et al. '12] for two colors as Black and White Bin Packing

Colored Bin Packing

- Bin Packing
- Input: items of sizes in $[0,1]$
- Goal: pack items into the minimum number of unit capacity bins
- Colored Bin Packing
- Each item has a color
- Two items of the same color cannot be one on the other
- Defined by [Balogh et al. '12] for two colors as Black and White Bin Packing

Colored Bin Packing

- Bin Packing
- Input: items of sizes in $[0,1]$
- Goal: pack items into the minimum number of unit capacity bins
- Colored Bin Packing
- Each item has a color
- Two items of the same color cannot be one on the other
- Defined by [Balogh et al. '12] for two colors as Black and White Bin Packing

Colored Bin Packing

- Bin Packing
- Input: items of sizes in $[0,1]$
- Goal: pack items into the minimum number of unit capacity bins
- Colored Bin Packing
- Each item has a color
- Two items of the same color cannot be one on the other
- Defined by [Balogh et al. '12] for two colors as Black and White Bin Packing

Colored Bin Packing

- Bin Packing
- Input: items of sizes in $[0,1]$
- Goal: pack items into the minimum number of unit capacity bins
- Colored Bin Packing
- Each item has a color
- Two items of the same color cannot be one on the other
- Defined by [Balogh et al. '12] for two colors as Black and White Bin Packing

Offline vs. restricted offline settings

- Offline
- Items are given in advance
- We can pack in any order

Offline vs. restricted offline settings

- Offline
- Items are given in advance
- We can pack in any order
- Restricted offline
- Items are given as a sequence
- We have to pack them in the given order
- Optimum can differ from the unrestricted offline case:
- n blue and then n red, all of size zero

Competitive ratio of an online algorithm

- For an input list of items L :
- $A L G(L)=\#$ of bins used by $A L G$
- $O P T(L)=$ restricted offline optimum
- $A L G$ is absolutely r-competitive if:
- for any L it holds $A L G(L) \leq r \cdot O P T(L)$

Competitive ratio of an online algorithm

- For an input list of items L :
- $A L G(L)=\#$ of bins used by $A L G$
- $O P T(L)=$ restricted offline optimum
- $A L G$ is absolutely r-competitive if:
- for any L it holds $A L G(L) \leq r \cdot O P T(L)$
- $A L G$ is asymptotically r-competitive if:
- $A L G(L) \leq r \cdot \operatorname{OPT}(L)+o(O P T(L))$

Competitive ratio of an online algorithm

- For an input list of items L :
- $A L G(L)=\#$ of bins used by $A L G$
- $O P T(L)=$ restricted offline optimum
- $A L G$ is absolutely r-competitive if:
- for any L it holds $A L G(L) \leq r \cdot O P T(L)$
- $A L G$ is asymptotically r-competitive if:
- $A L G(L) \leq r \cdot \operatorname{OPT}(L)+o(O P T(L))$
- $A L G$ has the competitive ratio r if
- it is r-competitive
- it is not r^{\prime}-competitive for $r^{\prime}<r$

Notation

- Level of a bin = cumulative size of all items in the bin
- c-item $=$ an item of color c
- c-bin $=$ a bin with a c-item on the top
- Example: red bin:

Lower bound on the restricted offline optimum

- Sum of items sizes $L B_{1}$
- Maximal color discrepancy $L B_{2}$
- 10 white, 2 red and 10 white must be packed into ≥ 18 bins

Lower bound on the restricted offline optimum

- Sum of items sizes $L B_{1}$
- Maximal color discrepancy $L B_{2}$
- 10 white, 2 red and 10 white must be packed into ≥ 18 bins
- Discrepancy for a color c on an interval of the input sequence:
\# of c-items - \# of items of other colors

Any Fit algorithms

- Opens a bin if it is really necessary

Any Fit algorithms

- Opens a bin if it is really necessary
- Main variants:
- First Fit (FF): chooses the first bin in which an incoming item fits
- Best Fit (BF): chooses the bin with the highest level
- Worst Fit (WF): chooses the bin with the lowest level

Any Fit algorithms

- Opens a bin if it is really necessary
- Main variants:
- First Fit (FF): chooses the first bin in which an incoming item fits
- Best Fit (BF): chooses the bin with the highest level
- Worst Fit (WF): chooses the bin with the lowest level

- We study both general and parametric cases
- Parametric case: for a real $d \geq 2$ the items have size at most $\frac{1}{d}$

Black and White Bin Packing

- [Balogh et al. '12 and '13], [Dósa and Epstein '14]
- Lower bound of 2 on competitiveness of all online algorithms

Black and White Bin Packing

- [Balogh et al. '12 and '13], [Dósa and Epstein '14]
- Lower bound of 2 on competitiveness of all online algorithms
- Competitiveness of algorithms - previous results:

Algorithm	Lower bound	Upper bound
First Fit	3	5
Best Fit	3	5
Worst Fit [parametric case]	$3\left[1+\frac{d}{d-1}\right]$	5
Pseudo [parametric case]	$3\left[1+\frac{d}{d-1}\right]$	$3\left[1+\frac{d}{d-1}\right]$

Black and White Bin Packing

- [Balogh et al. '12 and '13], [Dósa and Epstein '14]
- Lower bound of 2 on competitiveness of all online algorithms
- Competitiveness of algorithms - previous and our results:

Algorithm	Lower bound	Upper bound
First Fit	3	3
Best Fit	3	3
Worst Fit [parametric case]	$3\left[1+\frac{d}{d-1}\right]$	$3\left[1+\frac{d}{d-1}\right]$
Pseudo [parametric case]	$3\left[1+\frac{d}{d-1}\right]$	$3\left[1+\frac{d}{d-1}\right]$

- Our results
- Any Fit algorithms are absolutely 3-competitive
- Worst Fit for items of size $\leq \frac{1}{d}$ has ratio exactly $1+\frac{d}{d-1}$

Colored Bin Packing

- [Dósa and Epstein '14] independently of us
- Lower bound of 2 on competitiveness of all online algorithms
- For zero-size items
- Asymptotic lower bound 1.5
- 2-competitive algorithm
- 4-competitive algorithm for items of any size

Colored Bin Packing

- [Dósa and Epstein '14] independently of us
- Lower bound of 2 on competitiveness of all online algorithms
- For zero-size items
- Asymptotic lower bound 1.5
- 2-competitive algorithm
- 4-competitive algorithm for items of any size
- Our results
- For zero-size items
- Restricted offline optimum = maximal color discrepancy

Colored Bin Packing

- [Dósa and Epstein '14] independently of us
- Lower bound of 2 on competitiveness of all online algorithms
- For zero-size items
- Asymptotic lower bound 1.5
- 2-competitive algorithm
- 4-competitive algorithm for items of any size
- Our results
- For zero-size items
- Restricted offline optimum = maximal color discrepancy
- Optimal 1.5-competitive algorithm - uses at most $\lceil 1.5 \cdot O P T\rceil$ bins
- Lower bound of $\lceil 1.5 \cdot O P T\rceil$ for all online algorithms
- 3.5-competitive algorithm for items of any size
- $\left(1.5+\frac{d}{d-1}\right)$-competitive in the parametric case

Lower bound 1.5 for zero-size items

- Let n be the optimum
- The adversary sends the instance in phases
- In each phase:
- \# of black bins increases,
- or we get $\lceil 1.5 \cdot n\rceil$ bins
- Example for $n=4$:

Lower bound 1.5 for zero-size items

- Let n be the optimum
- The adversary sends the instance in phases
- In each phase:
- \# of black bins increases,
- or we get $\lceil 1.5 \cdot n\rceil$ bins
- Example for $n=4$:

Lower bound 1.5 for zero-size items

- Let n be the optimum
- The adversary sends the instance in phases
- In each phase:
- \# of black bins increases,
- or we get $\lceil 1.5 \cdot n\rceil$ bins
- Example for $n=4$:

Lower bound 1.5 for zero-size items

- Let n be the optimum
- The adversary sends the instance in phases
- In each phase:
- \# of black bins increases,
- or we get $\lceil 1.5 \cdot n\rceil$ bins
- Example for $n=4$:

Lower bound 1.5 for zero-size items

- Let n be the optimum
- The adversary sends the instance in phases
- In each phase:
- \# of black bins increases,
- or we get $\lceil 1.5 \cdot n\rceil$ bins
- Example for $n=4$:

Lower bound 1.5 for zero-size items

- Let n be the optimum
- The adversary sends the instance in phases
- In each phase:
- \# of black bins increases,
- or we get $\lceil 1.5 \cdot n\rceil$ bins
- Example for $n=4$:

Lower bound 1.5 for zero-size items

- Let n be the optimum
- The adversary sends the instance in phases
- In each phase:
- \# of black bins increases,
- or we get $\lceil 1.5 \cdot n\rceil$ bins
- Example for $n=4$:

- A little bit more complicated for an odd n to get $\lceil 1.5 \cdot n\rceil$ bins

Optimal algorithm for zero-size items

- Balancing Any Fit (BAF)
- Uses at most $\lceil 1.5 \cdot O P T\rceil$ bins
- $N_{c}=\#$ of c-bins
- Current discrepancy of a color c
- $C D_{c}=$ max. discrepancy on an interval ending just before the incoming item

Optimal algorithm for zero-size items

- Balancing Any Fit (BAF)
- Uses at most $\lceil 1.5 \cdot O P T\rceil$ bins
- $N_{c}=\#$ of c-bins
- Current discrepancy of a color c
- $C D_{c}=$ max. discrepancy on an interval ending just before the incoming item
- Main invariant for a color c
- $N_{c} \leq C D_{c}+\lceil 0.5 \cdot O P T\rceil$

Optimal algorithm for zero-size items

- Balancing Any Fit (BAF)
- Uses at most $\lceil 1.5 \cdot O P T\rceil$ bins
- $N_{c}=\#$ of c-bins
- Current discrepancy of a color c
- $C D_{c}=$ max. discrepancy on an interval ending just before the incoming item
- Main invariant for a color c
- $N_{c} \leq C D_{c}+\lceil 0.5 \cdot O P T\rceil$
- BAF mostly puts an incoming c-item into a bin of the most frequent other color

Optimal algorithm for zero-size items

- Balancing Any Fit (BAF)
- Uses at most $\lceil 1.5 \cdot O P T\rceil$ bins
- $N_{c}=\#$ of c-bins
- Current discrepancy of a color c
- $C D_{c}=$ max. discrepancy on an interval ending just before the incoming item
- Main invariant for a color c
- $N_{c} \leq C D_{c}+\lceil 0.5 \cdot O P T\rceil$
- BAF mostly puts an incoming c-item into a bin of the most frequent other color
- Exception: two colors have more than $\lceil 0.5 \cdot O P T\rceil$ bins

BAF: two colors have more than $\lceil 0.5 \cdot O P T\rceil$ bins

- Let these colors be black and yellow
- Example with $O P T=5$ and $\lceil 1.5 \cdot O P T\rceil=8$
- Suppose that $C D_{\text {black }}=1$ and $C D_{\text {yellow }}=1$
- Thus $N_{\mathrm{b}}=C D_{\mathrm{b}}+\lceil 0.5 \cdot O P T\rceil$ and $N_{\mathrm{y}}=C D_{\mathrm{y}}+\lceil 0.5 \cdot O P T\rceil$

BAF: two colors have more than $\lceil 0.5 \cdot O P T\rceil$ bins

- Let these colors be black and yellow
- Example with $O P T=5$ and $\lceil 1.5 \cdot O P T\rceil=8$
- Suppose that $C D_{\text {black }}=1$ and $C D_{\text {yellow }}=1$
- Thus $N_{\mathrm{b}}=C D_{\mathrm{b}}+\lceil 0.5 \cdot O P T\rceil$ and $N_{\mathrm{y}}=C D_{\mathrm{y}}+\lceil 0.5 \cdot O P T\rceil$

- We need to prove that
- $N_{\mathrm{b}}<C D_{\mathrm{b}}+\lceil 0.5 \cdot O P T\rceil$,
- or $N_{\mathrm{y}}<C D_{\mathrm{y}}+\lceil 0.5 \cdot O P T\rceil$

Algorithm Pseudo

- First Fit, Best Fit and Worst Fit
- Bad behavior for at least three colors

Algorithm Pseudo

- First Fit, Best Fit and Worst Fit
- Bad behavior for at least three colors
- Pseudo: 3.5-competitive algorithm for items of any size
- Uses pseudo bins = bins of unlimited capacity
- Divides them into unit capacity bins

Algorithm Pseudo

- First Fit, Best Fit and Worst Fit
- Bad behavior for at least three colors
- Pseudo: 3.5-competitive algorithm for items of any size
- Uses pseudo bins = bins of unlimited capacity
- Divides them into unit capacity bins
- Put an incoming item into a pseudo bin using BAF
- Apply Next Fit in the pseudo bin

Algorithm Pseudo

- Pseudo: 3.5-competitive algorithm for items of any size
- Uses pseudo bins = bins of unlimited capacity
- Divides them into unit capacity bins
- Put an incoming item into a pseudo bin using BAF
- Apply Next Fit in the pseudo bin

- Proof of 3.5 -competitiveness
- We pair all bins except one in each pseudo bin
- Each pair has total volume of more than 1
- \# of paired bins is at most $2 \cdot O P T-1$
- \# of non-paired bins $\leq \#$ of pseudo bins
- BAF uses at most $\lceil 1.5 \cdot$ OPT \rceil bins
- Altogether at most $3.5 \cdot$ OPT bins

Algorithm Pseudo

- Pseudo: 3.5-competitive algorithm for items of any size
- Uses pseudo bins = bins of unlimited capacity
- Divides them into unit capacity bins
- Put an incoming item into a pseudo bin using BAF
- Apply Next Fit in the pseudo bin

- Proof of 3.5 -competitiveness
- We pair all bins except one in each pseudo bin
- Each pair has total volume of more than 1
- \# of paired bins is at most $2 \cdot O P T-1$
- \# of non-paired bins $\leq \#$ of pseudo bins
- BAF uses at most $\lceil 1.5 \cdot$ OPT \rceil bins
- Altogether at most $3.5 \cdot$ OPT bins
- In the parametric case $\left(1.5+\frac{d}{d-1}\right)$-competitive

Worst Fit in the parametric case for two colors

- Worst Fit is $\left(1+\frac{d}{d-1}\right)$-competitive
- If all items have size $\leq \frac{1}{d}$ for a real $d \geq 2$
- Idea of the proof:
- Big bins $=$ bins with level $\geq \frac{d-1}{d}$
- \# of big bins is at most $\frac{d}{d-1} \cdot L B_{1}$
- Small bins $=$ bins with level $<\frac{d-1}{d}$
- We bound \# of small bins from above by $L B_{2}$

Any Fit algorithms for two colors

- Any algorithm in the Any Fit family is absolutely 3-competitive
- Similar proof, but more complicated
- Big bins have level ≥ 0.5 and small bins <0.5
- \# of small bins cannot be bounded by color discrepancy $L B_{2}$

Any Fit algorithms for two colors

- Any algorithm in the Any Fit family is absolutely 3-competitive
- Similar proof, but more complicated
- Big bins have level ≥ 0.5 and small bins <0.5
- \# of small bins cannot be bounded by color discrepancy $L B_{2}$
- We assign bins into chains
- Sequences of bins where the average level is ≥ 0.5
- We bound the number of bins not in chains by $L B_{2}$

Conclusions

- For at least three colors
- We have solved Colored Bin Packing for zero-size items
- For items of any size we have 3.5-competitive algorithm
- We have recently improved the lower bound to 2.5
- For two colors
- We improved the upper bound on competitiveness of Any Fit algorithms
- Tight for First Fit, Best Fit and Worst Fit

Open problems

- Design a better than 3.5-competitive algorithm
- Or improve the lower bound of 2.5
- Prove that no Any Fit algorithm can be better than 3-competitive for two colors

Open problems

- Design a better than 3.5-competitive algorithm
- Or improve the lower bound of 2.5
- Prove that no Any Fit algorithm can be better than 3-competitive for two colors
- Or find a better one

Thank you for your attention

