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Introduction

In traditional optimization problems, the input data is given (either
in deterministic form or stochastic form).

For example, in a linear program

maximizex πTx
subject to Ax = b

x ≥ 0,

one solves the decision variables all at once.

However, in many practical problems, the input information is not
available at the start, but reveals sequentially. Decisions have to be
made in an online fashion.

I Online linear programming problems
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Introduction

In this talk, we consider linear programs of the following format:

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ Bi , ∀i = 1, ...,m
0 ≤ xt ≤ 1, ∀t = 1, ..., n

In the online version of the problem: we only know Bi ’s at the
start.

I The constraint matrix is revealed column by column
sequentially along with the corresponding objective coefficient.

I An irrevocable decision must be made as soon as a column
arrives without observing or knowing the future data.
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Applications

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ Bi , ∀i = 1, ...,m
0 ≤ xt ≤ 1, ∀t = 1, ..., n

This model is frequently used in resource allocation problems.

I {ait}m
i=1 are the request of a bundle of goods by tth customer

I Bi is the inventory for the ith good.

I πt is the price that the tth customer is willing to pay.

I xt is the decision whether to accept or reject the tth customer

Customers arrive sequentially and an irrevocable decision must be
made without observing future customer arrivals.

I Applications: revenue management, channel allocation in
communication networks, charging allocation for electric
vehicles, etc.

Zizhuo Wang Online Linear Programs, TOLA



Applications

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ Bi , ∀i = 1, ...,m
0 ≤ xt ≤ 1, ∀t = 1, ..., n

This model is frequently used in resource allocation problems.

I {ait}m
i=1 are the request of a bundle of goods by tth customer

I Bi is the inventory for the ith good.

I πt is the price that the tth customer is willing to pay.

I xt is the decision whether to accept or reject the tth customer

Customers arrive sequentially and an irrevocable decision must be
made without observing future customer arrivals.

I Applications: revenue management, channel allocation in
communication networks, charging allocation for electric
vehicles, etc.

Zizhuo Wang Online Linear Programs, TOLA



Applications

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ Bi , ∀i = 1, ...,m
0 ≤ xt ≤ 1, ∀t = 1, ..., n

This model is frequently used in resource allocation problems.

I {ait}m
i=1 are the request of a bundle of goods by tth customer

I Bi is the inventory for the ith good.

I πt is the price that the tth customer is willing to pay.

I xt is the decision whether to accept or reject the tth customer

Customers arrive sequentially and an irrevocable decision must be
made without observing future customer arrivals.

I Applications: revenue management, channel allocation in
communication networks, charging allocation for electric
vehicles, etc.

Zizhuo Wang Online Linear Programs, TOLA



Applications

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ Bi , ∀i = 1, ...,m
0 ≤ xt ≤ 1, ∀t = 1, ..., n

This model is frequently used in resource allocation problems.

I {ait}m
i=1 are the request of a bundle of goods by tth customer

I Bi is the inventory for the ith good.

I πt is the price that the tth customer is willing to pay.

I xt is the decision whether to accept or reject the tth customer

Customers arrive sequentially and an irrevocable decision must be
made without observing future customer arrivals.

I Applications: revenue management, channel allocation in
communication networks, charging allocation for electric
vehicles, etc.

Zizhuo Wang Online Linear Programs, TOLA



Applications

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ Bi , ∀i = 1, ...,m
0 ≤ xt ≤ 1, ∀t = 1, ..., n

This model is frequently used in resource allocation problems.

I {ait}m
i=1 are the request of a bundle of goods by tth customer

I Bi is the inventory for the ith good.

I πt is the price that the tth customer is willing to pay.

I xt is the decision whether to accept or reject the tth customer

Customers arrive sequentially and an irrevocable decision must be
made without observing future customer arrivals.

I Applications: revenue management, channel allocation in
communication networks, charging allocation for electric
vehicles, etc.

Zizhuo Wang Online Linear Programs, TOLA



Applications

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ Bi , ∀i = 1, ...,m
0 ≤ xt ≤ 1, ∀t = 1, ..., n

This model is frequently used in resource allocation problems.

I {ait}m
i=1 are the request of a bundle of goods by tth customer

I Bi is the inventory for the ith good.

I πt is the price that the tth customer is willing to pay.

I xt is the decision whether to accept or reject the tth customer

Customers arrive sequentially and an irrevocable decision must be
made without observing future customer arrivals.

I Applications: revenue management, channel allocation in
communication networks, charging allocation for electric
vehicles, etc.

Zizhuo Wang Online Linear Programs, TOLA



Applications

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ Bi , ∀i = 1, ...,m
0 ≤ xt ≤ 1, ∀t = 1, ..., n

This model is frequently used in resource allocation problems.

I {ait}m
i=1 are the request of a bundle of goods by tth customer

I Bi is the inventory for the ith good.

I πt is the price that the tth customer is willing to pay.

I xt is the decision whether to accept or reject the tth customer

Customers arrive sequentially and an irrevocable decision must be
made without observing future customer arrivals.

I Applications: revenue management, channel allocation in
communication networks, charging allocation for electric
vehicles, etc.

Zizhuo Wang Online Linear Programs, TOLA



Applications

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ Bi , ∀i = 1, ...,m
0 ≤ xt ≤ 1, ∀t = 1, ..., n

This model is frequently used in resource allocation problems.

I {ait}m
i=1 are the request of a bundle of goods by tth customer

I Bi is the inventory for the ith good.

I πt is the price that the tth customer is willing to pay.

I xt is the decision whether to accept or reject the tth customer

Customers arrive sequentially and an irrevocable decision must be
made without observing future customer arrivals.

I Applications: revenue management, channel allocation in
communication networks, charging allocation for electric
vehicles, etc.

Zizhuo Wang Online Linear Programs, TOLA



Applications

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ Bi , ∀i = 1, ...,m
0 ≤ xt ≤ 1, ∀t = 1, ..., n

This model is frequently used in resource allocation problems.

I {ait}m
i=1 are the request of a bundle of goods by tth customer

I Bi is the inventory for the ith good.

I πt is the price that the tth customer is willing to pay.

I xt is the decision whether to accept or reject the tth customer

Customers arrive sequentially and an irrevocable decision must be
made without observing future customer arrivals.

I Applications: revenue management, channel allocation in
communication networks, charging allocation for electric
vehicles, etc.

Zizhuo Wang Online Linear Programs, TOLA



Our Objective

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ Bi , ∀i = 1, ...,m
0 ≤ xt ≤ 1, ∀t = 1, ..., n

We call the above problem the offline problem. And we denote the
optimal value of it by OPT .

Our objective: to find a decision rule for the online problem such
that it achieves near-optimal performance, i.e., an algorithm that
can achieve values close to OPT .
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Model Assumptions

Main Assumptions

I We know the total number of columns n a priori

I The columns at arrive in a random order, i.e., the set of
columns together with their objective coefficients πt can be
adversarily picked at the start. However, their arriving order is
uniformly distributed over all the permutations

The algorithm is evaluated on the expected performance over all
the permutations comparing to the offline optimal solution, i.e., an
algorithm A is c-competitive if and only if

Eσ

[
n∑

t=1

πtxt(σ,A)

]
≥ c · OPT
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Comment on the Assumptions

Random permutation of input:

I An intermediate path between worst-case and i.i.d model.

I Worst case model: Too conservative, no algorithm can
achieve better than O(1/n) approximation of the optimal
offline solution [Babaioff et al 2008].

I i.i.d. model: Need distribution information. Performance
might suffer if the actual input distribution is not as assumed.

I Our assumption is strictly weaker than the i.i.d. model
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Main Results

Theorem
We propose an algorithm such that for any fixed ε > 0, our online
algorithm is 1−O(ε) competitive for online linear programming on
all inputs when

B = mini Bi ≥ Ω
(

m log (n/ε)
ε2

)

Theorem
For any online algorithm for the online linear program in random
permutation model, there exists an instance such that the
competitive ratio is less than 1− O(ε) if

B = min
i

Bi ≤
log(m)

ε2
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Compare to Previous Results

k-secretary problem [Kleinberg 2005]: special case when m = 1,
and at = 1 for all t. His algorithm is 1− O(ε)-competitive for
B ≥ 1

ε2

I We extend the result to multi-products case.

I The ε part of the bound is still unchanged, thus must be
optimal

I We show, for the first time, that the dimension of the problem
m indeed adds to its difficulty (at least log m).

Our algorithm is quite different from theirs due to the higher
dimension
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Compare to Previous Results

Online adwords problem [Devanur and Hayes 2009]: special case of
the online linear programming problem. They have an algorithm
that achieves 1− ε-competitiveness if

OPT ≥ Ω

(
m2 log(mn)

ε3

)
I We consider a much more general problem

I Their results is weaker by a factor or ε and also depend on
OPT which is not known until the problem is solved. (Our
condition can be verified before solving the problem)
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Key Ideas of Our Algorithm

Dual Optimal Price

I For the offline linear program, there exists a dual price vector
p∗ for each goods such that, x∗t = 1 if πt > aT

t p∗ and x∗t = 0
otherwise, is near optimal

Learning the price:

I Our online algorithm works by learning a price vector p̂. The
price vector is determined by solving the dual problem using
existing arrival data.

We first show a one-time learning algorithm to illustrate this idea.
Then we show that we can improve the algorithm by updating the
price vector more frequently.
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One-Time Learning Algorithm

1. Set xt = 0 for all t ≤ εn

2. Solve the ε part of the problem

maximizex
∑εn

t=1 πtxt

subject to
∑εn

t=1 aitxt ≤ (1− ε)εBi i = 1, ...,m
0 ≤ xt ≤ 1 t = 1, ..., εn

Get the optimal dual solution p̂;

3. Determine the future allocation xt(p̂) as:

xt(p̂) =

{
0 if πt ≤ p̂Tat

1 if πt > p̂Tat

If aitxt(p̂) ≤ Bi −
∑t−1

j=1 aijxj , set xt = xt(p̂); otherwise, set
xt = 0.

Zizhuo Wang Online Linear Programs, TOLA



One-Time Learning Algorithm

1. Set xt = 0 for all t ≤ εn

2. Solve the ε part of the problem

maximizex
∑εn

t=1 πtxt

subject to
∑εn

t=1 aitxt ≤ (1− ε)εBi i = 1, ...,m
0 ≤ xt ≤ 1 t = 1, ..., εn

Get the optimal dual solution p̂;

3. Determine the future allocation xt(p̂) as:

xt(p̂) =

{
0 if πt ≤ p̂Tat

1 if πt > p̂Tat

If aitxt(p̂) ≤ Bi −
∑t−1

j=1 aijxj , set xt = xt(p̂); otherwise, set
xt = 0.

Zizhuo Wang Online Linear Programs, TOLA



One-Time Learning Algorithm

1. Set xt = 0 for all t ≤ εn

2. Solve the ε part of the problem

maximizex
∑εn

t=1 πtxt

subject to
∑εn

t=1 aitxt ≤ (1− ε)εBi i = 1, ...,m
0 ≤ xt ≤ 1 t = 1, ..., εn

Get the optimal dual solution p̂;

3. Determine the future allocation xt(p̂) as:

xt(p̂) =

{
0 if πt ≤ p̂Tat

1 if πt > p̂Tat

If aitxt(p̂) ≤ Bi −
∑t−1

j=1 aijxj , set xt = xt(p̂); otherwise, set
xt = 0.

Zizhuo Wang Online Linear Programs, TOLA



One-Time Learning Algorithm

1. Set xt = 0 for all t ≤ εn

2. Solve the ε part of the problem

maximizex
∑εn

t=1 πtxt

subject to
∑εn

t=1 aitxt ≤ (1− ε)εBi i = 1, ...,m
0 ≤ xt ≤ 1 t = 1, ..., εn

Get the optimal dual solution p̂;

3. Determine the future allocation xt(p̂) as:

xt(p̂) =

{
0 if πt ≤ p̂Tat

1 if πt > p̂Tat

If aitxt(p̂) ≤ Bi −
∑t−1

j=1 aijxj , set xt = xt(p̂); otherwise, set
xt = 0.

Zizhuo Wang Online Linear Programs, TOLA



Analysis Idea

By the complementarity conditions of LP, if we can show that∑n
t=1 aitxt(p̂) = Bi for each i , then xt(p̂) is the optimal solution

to the offline problem.

Lemma
With probability 1− ε,

(1− 3ε)Bi ≤
n∑

t=1

aitxt(p̂) ≤ Bi ,∀i = 1, . . . ,m

given B ≥ 6m log(n/ε)
ε3 .

The proof uses intensively concentration inequalities
(Hoeffding-Bernstein Inequalities) and union bound arguments
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Analysis Idea Continued

However, by the complementarity conditions, x(p̂) is optimal to

maximizex
∑

t πtxt

subject to
∑

t aitxt ≤
∑

t aitxt(p̂) i = 1, ...,m
0 ≤ xt ≤ 1 t = 1, ..., n

Then by the above lemmas, it is easy to show that with high
probability

∑n
t=1 πtxt(p̂) ≥ (1− 3ε)OPT .
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Analysis Idea Continued

Another thing we need to take care of is that the algorithm does
not make allocation in the first εn period.

Lemma
Let OPT (S) denote the optimal value of the linear program

maximizex
∑

t∈S πtxt

subject to
∑

t∈S aitxt ≤ εBi , i = 1, ...,m
0 ≤ xt ≤ 1, t ∈ S .

over random sample S ⊂ N where |S | = ε|N|, and OPT (N) denote
the optimal value of the original offline linear program. Then,

E [OPT (S)] ≤ εOPT (N)
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Analysis Idea Continued

Summarizing all the lemmas above:

I With high probability, we never violate the inventory constraint

I With high probability, the objective value is near-optimal if we
include the initial ε portion

I With high probability, the first ε portion of the objective
value, a learning cost, doesn’t contribute too much.

Therefore, we proved that our one-time learning algorithm is
1− O(ε)-competitive if B ≥ 6m log(n/ε)

ε3 .
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Dynamic Price Updating Algorithm

The one-time learning algorithm is simple, but the condition
required on the size of B is stronger than the main theorem claims

I ε3 versus ε2

The one-time learning algorithm only computes the price once.

I Potential improvement might be made by updating the price
dynamically during the process.

Question

I How often should we update the price?
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Dynamic Price Updating Algorithm

In the dynamic price updating algorithm, we update the price at
time εn, 2εn, 4εn...

At time ` ∈ {εn, 2εn, ...}, the price is the optimal dual solution to
the following linear program:

maximizex
∑`

t=1 πtxt

subject to
∑`

t=1 aitxt ≤ (1− h`)
`
nbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., `

where

h` = ε

√
n

`

And this price is used to determine the allocation for the next
immediate period.
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Geometric Pace of Price Updating
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Dynamic Price Updating Algorithm

I In this algorithm, we update the price log2 (1/ε) times during
the entire time horizon.

I The numbers h` play an important role in improving the
condition on B in our main theorem. It balances the
probability that the inventory constraint ever gets violated and
the lost of objective value due to the factor 1− h`.

I Choosing large h` (more conservative) at the beginning
periods and smaller h` (more risk neutral) at the later periods,
we can control the loss of objective value by an ε order while
the required size of B can be weakened by an ε factor.
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Proof Outline of the Dynamic Price Updating Algorithm

The proof is similar to the proof of the one-time learning
algorithm. We first show the following lemma:

Lemma
For any ε > 0, with probability 1− ε:

2∑̀
t=`+1

aitxt(p̂
`) ≤ `

n
bi , for all i ∈ {1, . . . ,m}, ` ∈ {εn, 2εn, ...}

given B = mini bi ≥ 10m log (n/ε)
ε2 .

This lemma states that for each time period, with high probability,
the inventory consumed by x(p̂) is less than the proportional total
inventory.
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Proof Outline of the Dynamic Price Updating Algorithm

Next we need to show that by introducing a factor h`, the loss of
objective value is small.

It is easy to see that at period `, the lost of objective value is
about h` · `

nOPT . Then the total loss of objective value is about∑
`∈{εn,2εn,...} h`

`
nOPT

= ε
∑

`∈{εn,2εn,...}

√
`
nOPT

≤ εOPT
∑√

1
2i

≤ O(εOPT )

Therefore, the loss of objective value is very small. And we can
conclude that this algorithm gives a near-optimal solution.
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Summary

We propose a dynamic near-optimal algorithm for a class of online
linear programming problems under the random permutation
model

I It solves linear programs for dual price based on revealed data,
and uses these prices to make future allocations

I The algorithm has the feature of “learning-while-doing”, and
the pace the price is updated is neither too fast nor too slow

I The application includes various online resource allocation and
revenue management problems
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