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Abstract. We consider the minimum spanning tree problem with pre-
dictions, using the weight-arrival model, i.e., the graph is given, together
with predictions for the weights of all edges. Then the actual weights
arrive one at a time and an irrevocable decision must be made regarding
whether or not the edge should be included into the spanning tree. In or-
der to assess the quality of our algorithms, we define an appropriate error
measure and analyze the performance of the algorithms as a function of
the error. We prove that, according to competitive analysis, the simplest
algorithm, Follow-the-Predictions, is optimal. However, intuitively, one
should be able to do better, and we present a greedy variant of Follow-
the-Predictions. In analyzing that algorithm, we believe we present the
first random order analysis of a non-trivial online algorithm with pre-
dictions, by which we obtain an algorithmic separation. This may be
useful for distinguishing between algorithms for other problems when
Follow-the-Predictions is optimal according to competitive analysis.

Keywords: Online Algorithms · Predictions · Random Order Analysis
· Minimum Spanning Tree.

1 Introduction

The Minimum Spanning Tree (MST) problem is one of the classical graph al-
gorithms problems, where one must select edges from a weighted graph such
that these constitute a spanning tree of minimal weight. We consider an online
version of this problem in the relatively new context of predictions, a direction
that emerged following the successes of machine learning that has provided more
accessible and reliable predictions.

In the area of online algorithms, we consider problems, many of which have
offline counterparts, where input is presented to an algorithm in a piece-wise
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fashion (often referred to as requests), and irrevocable decisions must be made
when each item is presented. The quality of an online algorithm is often assessed
using competitive analysis, which essentially focuses on the worst-case ratio of
the cost of the online algorithm to the cost of an optimal, offline algorithm, Opt.

When considering graph problems, various models, inspired by different appli-
cation scenarios, exist. In the vertex-arrival model, the requests are the vertices
of the graph, arriving together with the subset of its incident edges that connect
to vertices that have already arrived. In the edge-arrival model, requests are the
edges, identified by their two endpoints. For weighted graphs, there is also the
weight-arrival model, where the graph is known, and the weights arrive online.
In the vertex-arrival and edge-arrival models, there is only one possible online
algorithm, the one that accepts every edge that does not create a cycle, since
otherwise the algorithm’s output might not span the entire graph. Even in the
weight-arrival model, no deterministic algorithm for online MST can be compet-
itive [15]. This makes the problem hard, but interesting in the context of advice
or predictions.

Partially in an attempt to measure how much information about the future is
needed for various online problems, online algorithms with advice were intro-
duced [11, 9, 7, 4]. In the model used most often, it is an information-theoretical
game of how few oracle-produced bits in total are needed to obtain a particular
competitive ratio or optimality. Obviously, the connection here is that oracle-
based advice can be considered infallible predictions. The MST problem has been
considered by Bianchi et al. in this model [3]. They obtain results for various
arrival models and restricted graph classes, including the weight-arrival model,
but with only two different weights allowed.

The seminal paper by Lykouris and Vassilvitskii [16], introducing machine-
learned advice, which is now more often referred to as predictions, has inspired
rapidly growing [1] efforts in the area [17]. In this context, ideally we want algo-
rithms to use the predictions and perform optimally when predictions are correct
(referred to as consistency), perform as well as a good online algorithm when pre-
dictions are all wrong (robustness), and degrade gracefully from one to the other
as the predictions become increasingly erroneous (smoothness). The ideal situa-
tion described above can of course often not be reached, so one proves upper and
lower bounds, as is customary in the field. Discussing smoothness requires a def-
inition of error. This is problem-dependent and requires some thought. We want
to distinguish between good and bad algorithms, and defining error measures
that exaggerate or underestimate the importance of errors leads to unreliable
results.

For the online MST problem with predictions, there are natural error measures.
We arrive at an error measure, defined as the sum of differences between the
predicted and actual values of the n−1 edges (the number of edges in a spanning
tree) with the largest discrepancies; a measure with desirable properties.
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We focus on the MST problem with predictions in the weight-arrival model. Our
first somewhat surprising result is that with this error measure (or any of some
reasonable alternatives), competitive analysis [18, 13] cannot distinguish between
different, correct algorithms. This means that the most näıve algorithm, Follow-
the-Predictions (FtP), is optimal under this measure, with a competitive ratio
of 1 + 2ε, where ε is the error, normalized by the value of Opt. Of course, this
also means that the perhaps more reasonable algorithm, we call Greedy Follow-
the-Predictions (GFtP), that switches to another edge when a revealed actual
weight matches or does better than the predicted weight of an edge it could
replace, is indistinguishable from FtP under competitive analysis.

In online algorithms, there are other performance measures one can turn to when
competitive analysis is insufficient, as discussed in [8, 6, 5]. One of the most well
accepted is Random Order Analysis [14], also called the Random Order Model; a
chapter in [10] discusses some results. Note that the problem from [10] of finding
a maximum forest is not very similar to our problem, since the forest is not
required to be spanning. The random order analysis technique reduces the power
of the adversary, compared to competitive analysis. In competitive analysis, the
adversary chooses the requests and the order in which they a presented, while in
random order analysis, the adversary chooses the requests, but those requests are
presented to the algorithm uniformly at random. Using random order analysis,
we establish a separation between FtP and GFtP. We believe this is the first
time random order analysis has been applied in the context of predictions.

Omitted details and proofs can be found in the full paper [2].

2 Preliminaries

Given an online algorithm Alg for an online minimization problem Π, and an
instance I of Π, we let Alg[I] denote Alg’s solution on instance I, and Alg(I)
denote the cost of Alg[I]. Then, the competitive ratio of Alg is

crAlg = inf{c | ∃b : ∀I : Alg(I) ⩽ cOpt(I) + b}.

When online algorithms have access to a predictor, a further parameter is intro-
duced into the problem, namely the accuracy of that predictor. Throughout this
paper, we let η be the error measure that computes the quality of the predic-
tions, and we let ε = η

Opt be the normalized error measure. Our error measure
is defined later (see Definition 1).

Given an online algorithm with predictions, Alg, we express the competitive
ratio of Alg as a function of ε, and evaluate it based on the three criteria:
consistency, robustness, and smoothness. Following [16], we define consistency as
Alg’s competitive ratio, when the prediction error is 0. Alg is α-consistent if
there exists a constant, α, such that crAlg(0) = α.

As ε grows, the competitive ratio of Alg will decay as a function of ε. For a
function, β, we say that Alg is β-smooth, if crAlg(ε) ⩽ β(ε), for all ε ⩾ 0.
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An algorithm, Alg, is said to be γ-robust, if there exists some constant γ such
that crAlg(ε) ⩽ γ, for all ε ⩾ 0. Since no online algorithm for the WMST
problem can be competitive, the robustness of any deterministic online algo-
rithm with predictions cannot be worse than the competitive ratio of any online
algorithm.

2.1 Random Order Analysis

Given an online algorithm, Alg, for a problem, Π, and an instance of Π with
request sequence I = ⟨i1, i2, . . . , in⟩, a permutation σ of I is chosen uniformly
at random, and σ(I) is presented to Alg. The random order ratio of Alg is
defined as

rorAlg = inf{c | ∃b : ∀I : Eσ[Alg(σ(I))] ⩽ cOpt(I) + b},

As with the competitive ratio, we express the random order ratio of algorithms
with predictions as a function of ε.

2.2 Weight-Arrival MST Problem

The offline MST problem is a thoroughly studied problem, for which efficient
optimal algorithms are known, for example Kruskal’s and Prim’s Algorithms.
Given a graph G = (V,E,w), the task is to find a spanning tree T for G that
minimizes the objective function c(T ) =

∑
e∈E(T ) w(e). For the MST problem

in the weight-arrival model (WMST), online algorithms are initially provided
with the underlying graph G = (V,E), and then the weights of the edges in
G arrive online. At the time the true weight of an edge e arrives, the online
algorithm has to irrevocably accept or reject e for its final tree. We focus on
the WMST problem where we assume that an online algorithm has access to
predicted weights for all edges in G before the online computation is initiated.

2.3 Notation and Nomenclature

We use the notation R+ and Z+ to denote the positive real numbers and the
positive integers, respectively. Graphs, in the following, are weighted, simple,
connected and undirected, with weights in R+. Given a graph G, n = |V (G)|
and m = |E(G)|. For any clarification on graph theory, we refer to [19]. Further,
we define a WMST-instance to be a triple (G, ŵ, w) consisting of a graph G, and
two maps ŵ : E(G) → R+ and w : E(G) → R+, defining for each edge e ∈ E(G),
a predicted weight ŵ(e) and a true weight w(e). Given a graph G and a tree
T ⊂ G, when writing T , we implicitly refer to E(T ).

Given an algorithm with predictions, Alg, for the WMST problem, and a
WMST-instance (G, ŵ, w), we let Alg[ŵ(E(G)), w(E(G))] denote the tree that
Alg outputs. When G is clear from the context, we write Alg[ŵ, w] and let
Alg(ŵ, w) denote the cost of Alg[ŵ, w]. We let Opt[w] be an optimal MST of
G, and Opt[ŵ] be an optimal MST of G with respect to ŵ.
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2.4 Error Measure

We use the following measure, denoted by η, selected due to its desirable proper-
ties and its ability to distinguish between algorithms under random order anal-
ysis. In the full paper [2], we show that intuitive alternatives have flaws.

Definition 1. Let (G, ŵ, w) be any WMST-instance, e1, e2, . . . , em be any or-
dering of E(G), and {pi}i be the sequence where pi := |w(ei)− ŵ(ei)|. Further,
let {pij}j be the sequence {pi}i, sorted such that pi1 ⩾ pi2 ⩾ · · · ⩾ pim . The er-

ror, η, is given by η(ŵ, w) =
∑n−1

j=1 pij . When (G, ŵ, w) is clear from the context,
we write η for η(ŵ, w). The normalized error is ε = η

Opt .

Note that n − 1 is the number of edges in a spanning tree. Thus, the risk of
unreasonably large prediction errors for dense graphs as with other possible
error measures has been eliminated (see the full paper [2]). This measure also
satisfies the monotonicity and Lipschitzness properties from [12].

3 Optimal Algorithms under Competitive Analysis

We prove that our two algorithms FtP and GFtP, defined in Algorithms 1 and
2, respectively, are 1-consistent and (1 + 2ε)-smooth algorithms and that this
is best possible. First, we focus on the simplest algorithm, called Follow-the-
Predictions (FtP), defined in Algorithm 1.

Algorithm 1 FtP

1: Input: A WMST-instance (G, ŵ, w)
2: Let T be a MST of G w.r.t. ŵ
3: while receiving inputs (w(ei), ei) do
4: if ei ∈ T then
5: Accept ei ▷ Add ei to the solution

Theorem 1. crFtP(ε) ⩽ 1 + 2ε.

We also present a non-trivial algorithm, called Greedy-FtP (GFtP) that starts
by producing the tree that FtP outputs. Whenever the true weight of an edge,
e, that is not contained in GFtP’s current tree is revealed, the algorithm checks
whether e can replace an edge in its current tree. It does so by comparing the
predicted weights of a subset of edges in its current tree by the newly revealed
true weight. We formalize the strategy of GFtP in Algorithm 2.

Theorem 2. crGFtP(ε) ⩽ 1 + 2ε.
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Algorithm 2 GFtP

1: Input: A WMST-instance (G, ŵ, w)
2: Let T be a MST of G w.r.t. ŵ
3: S = ∅ ▷ S contains the seen edges
4: while receiving inputs (w(ei), ei) do
5: S = S ∪ {ei}
6: if ei ∈ T then
7: Accept ei ▷ Add ei to the solution
8: else ▷ ei ̸∈ T
9: C is the cycle ei introduces in T
10: C′ = C \ S
11: if C′ ̸= ∅ then
12: emax = arg maxej∈C′{ŵ(ej)}
13: if w(ei) ⩽ ŵ(emax) then
14: T = (T \ {emax}) ∪ {ei} ▷ Update T
15: Accept ei ▷ Add ei to the solution

Theorem 3. For any ε ∈ [0, 1/2), any deterministic online algorithm, Alg, for
the WMST problem with weight predictions has crAlg(ε) ⩾ 1 + 2ε.

Proof. We only sketch the proof. The adversary uses the following graph, where

k =
⌈

5
2−r

⌉
and ℓ = k2.

• V = {v1, v2, . . . , v2k} ∪ {zj | 1 ⩽ j ⩽ ℓ},

• E = I ∪
⋃ℓ

j=1 Ej , where

- I =
⋃2k−1

i=1 {(vi, vi+1)} and

- Ej = {(zj , vi) | 1 ⩽ i ⩽ 2k}, for all j = 1, 2, . . . , ℓ,

• ŵk,ℓ(e) = wk,ℓ(e) = 1, for all e ∈ I,

• ŵk,ℓ((zj , vi)) = k + i− 1, for all (zj , vi) ∈ Ej , and

• For 1 ≤ j ≤ ℓ, if Alg accepts an edge (zj , vi), 1 ≤ i ≤ 2k − 1, then
wk,ℓ((zj , vi+1)) = i. Otherwise, wk,ℓ((zj , v2k)) = 4k.

To see that the result holds for any ε < 1/2, note that adding some real number
to all predicted and true weights changes Opt, but Alg−Opt as well as η
remain unchanged. ⊓⊔

In the full paper, we prove that, for FtP and GFtP, the lower bound of 1 + 2ε
holds for any ε ∈ R+. Thus, we obtain:

Corollary 1. crFtP(ε) = crGFtP(ε) = 1 + 2ε, and this is optimal among de-
terministic algorithms.
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4 Separation by Random Order Analysis

We show that GFtP has a better random order ratio than FtP, separating
the two algorithms. Throughout, we set TFtP = Opt[ŵ], TOpt = Opt[w], and
TGFtP = GFtP[ŵ, w]. Further, we denote by T the tree that GFtP makes
online changes to. Note that initially T = TFtP, and after GFtP has processed
the full input sequence, T = TGFtP. Finally, we denote by S the collection of
seen edges in E(G), i.e., those edges whose true weight has been revealed.

Theorem 4. rorFtP(ε) = 1 + 2ε.

Proof. Since FtP does not make online changes to TFtP, the competitive analysis
of FtP translates directly to a random order analysis of FtP. Hence, the result
follows from Corollary 1. ⊓⊔

We start with the following lower bound on GFtP.

Theorem 5. rorGFtP(ε) ⩾ 1 + ε.

We now turn to proving an upper bound of 1 + (1 + ln(2))ε ≈ 1 + 1.69 ε on the
random order ratio of GFtP (Theorem 6). To this end, we apply the following
lemmas.

Lemma 1. Let G be a graph, and let T1 and T2 be two spanning trees of G.
Then, for any edge e1 ∈ T1 \ T2, there exists an edge e2 ∈ T2 \ T1 such that e2
introduces a cycle into T1 that contains e1, and e1 introduces a cycle into T2 that
contains e2.

Lemma 2. Let e ∈ TFtP \ S. If, at any point, an edge e′ introduces a cycle in
T that contains e, then ŵ(e) ⩽ ŵ(e′).

Lemma 3. For all integers n ⩾ 2, we have that

1

n− 1

n−2∑
i=0

(
1 +

n− 1

2n− 2− i

)
⩽ 1 + ln(2) .

Lemma 4. Suppose that GFtP has just rejected e′ ̸∈ T . Then, at any future
point, any unseen edge e that is contained in the cycle that e′ introduces into T ,
at that point, satisfies that ŵ(e) < w(e′).

Theorem 6. rorGFtP(ε) ⩽ 1 + (1 + ln(2))ε.
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Proof. Given a WMST-instance (G, ŵ, w), we let TGFtP,σ denote the output
tree that GFtP constructs when run on (G, ŵ, w), where the order in which
the weights arrive has been permuted according to a uniformly randomly chosen
permutation σ of {1, 2, . . . ,m}. Further, we denote by GFtP(ŵ, w, σ) the cost
of TGFtP,σ.

The idea towards a random order ratio upper bound for GFtP is to prove the
existence of a subset EBlame ⊂ TOpt ∪ TGFtP,σ such that

Eσ[GFtP(ŵ, w, σ)]−Opt(w) ⩽
∑

e∈EBlame

|ŵ(e)− w(e)| .

and

Eσ[|EBlame|] ⩽ (n− 1)(1 + ln(2)) .

More specifically, we define a function f : TGFtP,σ → TOpt and prove that f is
bijective, implying that

Eσ[GFtP(ŵ, w, σ)]−Opt(w) =
∑

e∈TGFtP,σ

(w(e)− w(f(e))) ,

and then, for each e ∈ TGFtP,σ, argue that w(e)−w(f(e)) is upper bounded by
the prediction error of either e or f(e), or the sum of the two. Then, we show
that the expected number of edges for which the upper bound is the error of
both e and f(e) is upper bounded by (n− 1) ln(2). We also show that the edges
whose errors are used as upper bounds are all distinct.

Recall that throughout the execution of GFtP, its current tree is called T . For
the remainder of this proof, we denote by T ′ a spanning tree of G that is initially
set to TOpt. We use T ′ to keep track of which edges in TOpt have been associated
with an edge in TGFtP,σ under f . Any timeGFtP accepts an edge e, we associate
e with an edge e′ ∈ T ′ under f . We consider two cases:

(a) If e ∈ T ′, we set f(e) = e and leave T ′ unchanged.

(b) If e ̸∈ T ′, then Lemma 1 implies that there exists an edge e′ ∈ T ′ \ T such
that e′ introduces a cycle into T that contains e, and e introduces a cycle
into T ′ that contains e′. We select such an edge e′, set f(e) = e′, and replace
e′ by e in T ′.

We repeat this process every timeGFtP accepts an edge. This, however, requires
T ′ to remain a spanning tree at all times. To see that T ′ remains a spanning tree,
we note that in case (a), T ′ remains unchanged and is therefore still a spanning
tree. In case (b), we replace e′ with e in T ′. Since e introduces a cycle into T ′

that contains e′, it follows that T ′ remains acyclic after the replacement, and so
T ′ is still a spanning tree.

Towards bijectivity of f : In case (a), f(e) = e, and so e ∈ (T ∩T ′ ∩S). Since
e ̸∈ ((T ∩T ′)\S)∪ (T ′ \T ), we never map to e again later. In case (b), f(e) = e′,
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and after replacing e′ by e in T ′, we find that e ∈ (T ∩ T ′ ∩ S), and e′ ∈ T ∪ T ′.
Hence, as neither e nor e′ is contained in (T ∩ T ′ \ S) ∪ (T ′ \ T ), we never map
to either again later. Hence f is injective, and since |TGFtP,σ| = |TOpt|, f is
bijective.

We now describe how the set EBlame is constructed. For each edge e accepted by
GFtP, we do the following, based on the situation at the time when w(e) has
been revealed, but e has not yet been handled by GFtP.

– If e ∈ T ′, no edge is added to EBlame.

– If e ∈ T ∪ T ′, we add f(e) to EBlame.

– If e ∈ T \ T ′, then

• if w(f(e)) arrives before w(e), we add e to EBlame,

• otherwise, we add both e and f(e) to EBlame.

For each edge e accepted by GFtP, let Ee be the set of edges added to EBlame

because of e by the above scheme. By the following case analysis, we prove that

w(e)− w(f(e)) ≤
∑

e′∈Ee

|ŵ(e′)− w(e′)| .

Whenever an edge, enext, has its weight revealed, we consider the following cases.

Case enext ∈ T ∩ T ′: GFtP accepts enext. By (a), f(enext) = enext, implying
that w(enext)− w(f(enext)) = 0.

Case enext ∈ T ∪ T ′: If GFtP accepts enext ∈ T ∪ T ′, it does so due to enext
replacing some edge e ∈ T that is contained in the cycle that enext introduces
into T . We let eOpt denote f(enext) and argue that

w(enext)− w(eOpt) ⩽ |ŵ(eOpt)− w(eOpt)| .

Note that since GFtP swapped out e for enext, we have that w(enext) ⩽ ŵ(e).
Further, we can argue that ŵ(e) ⩽ ŵ(eOpt). Indeed, if e = eOpt, this is trivial. If
e ̸= eOpt, then, since eOpt introduces a cycle that contains enext, it follows that
before swapping out e for enext, eOpt would introduce a cycle into T containing
e, and so ŵ(e) ⩽ ŵ(eOpt), by Lemma 2. Hence,

w(enext)− w(eOpt) ⩽ ŵ(e)− w(eOpt)

⩽ ŵ(eOpt)− w(eOpt)

⩽ |ŵ(eOpt)− w(eOpt)| .

Case enext ∈ T ′ \ T : In this case, enext introduces a cycle C in T . Denote by
e an edge in C \ S for which e = arg maxei∈C\S{ŵ(ei)}. We split the remaining
analysis of this case into two subcases.
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Subcase (accept): If w(enext) ⩽ ŵ(e), then GFtP accepts enext and re-
moves e from its tree. Then, by (a), f(enext) = enext and so w(enext) −
w(f(enext)) = 0.

Subcase (reject): If ŵ(e) < w(enext), then GFtP rejects enext. Since each
edge in T ′ will, at some point, be associated with an edge in TGFtP,σ, by
the bijectivity of f , it follows that GFtP will later accept some edge that
will be associated with enext under f . Denote this edge by efuture, such that
f(efuture) = enext.

Note thatGFtP can accept efuture either due to a swap, or because w(efuture)
was revealed while contained in T . In the latter case, at the time where
GFtP accepts efuture, we find that efuture is contained in the cycle that enext
introduces into T , and so, by Lemma 4, ŵ(efuture) < w(enext), implying that
w(efuture)− w(enext) < w(efuture)− ŵ(efuture).

Case enext ∈ T \ T ′: In this case, GFtP accepts enext. By (b), there exists
an edge eOpt ∈ T ′ \ T such that f(enext) = eOpt. Since T remains unchanged
when w(enext) is revealed, it follows that eOpt would introduce a cycle in T
containing enext before w(enext) was revealed. Hence, by Lemma 2, we find that
ŵ(enext) ⩽ ŵ(eOpt), and so

w(enext)− w(eOpt) = w(enext)− ŵ(enext) + ŵ(enext)− w(eOpt)

⩽ w(enext)− ŵ(enext) + ŵ(eOpt)− w(eOpt)

⩽ |w(enext)− ŵ(enext)|+ |ŵ(eOpt)− w(eOpt)| .

If w(f(enext)) is revealed before w(enext), we obtain a stronger upper bound of
|w(enext)− ŵ(enext)|, as shown in Case enext ∈ T ′ \ T Subcase (reject).

This ends the case analysis.

Next, we show that all edges in EBlame are distinct. To this end, let e be an edge
that GFtP has just accepted. By construction of EBlame, we either add e, f(e),
or both to EBlame. After e has been accepted, e ∈ T ∩T ′, and can therefore never
be hit under f . Hence, e will not be added to EBlame again later. Similarly, if
f(e) = e, f(e) will not be added to EBlame again later. On the other hand, if
f(e) ̸= e, then after replacing f(e) with e in T ′, f(e) ∈ T ∪ T ′, and f(e) may
therefore be accepted later due to a swap. In this case, by construction of EBlame,
f(f(e)) ̸= f(e) is added to EBlame, and so we do not add f(e) twice.

Now, all that remains is to show that Eσ[|EBlame|] ⩽ (n− 1)(1 + ln(2)).

For the remainder of this proof, let i be the random variable that counts the
number of edges that have either been accepted by GFtP (now in T ′ ∩ T ∩ S),
or belong to T ′ \ T and have been rejected (now in (T ′ \ T ) ∩ S). Thus, i =
|T ′∩T ∩S|+ |(T ′ \T )∩S| = |T ′∩S|. One may observe that i remains unchanged
when enext ∈ T ∪ T ′ and GFtP rejects enext. In all other of the above cases, i
is incremented.

We prove the following invariants.
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Invariant (i): Any edge in T \ T ′ is unseen.

Proof of (i): Initially, all edges are unseen. Whenever the weight of an edge
e ∈ T \ T ′ is revealed, we replace f(e) with e in T ′, so now e ∈ T ∩ T ′. Hence,
after replacing f(e) with e in T ′, all edges in T \ T ′ are again unseen.

Invariant (ii): For any 0 ⩽ i ⩽ n − 2, the probability that the next edge is
contained in T \ T ′, denoted pi, satisfies

pi =
|(T \ T ′) \ S|
|E(G) \ S|

⩽
n− 1

2n− 2− i
,

Proof of (ii): We let j count the number of seen edges. At any point in time,
i ≤ j. Now, observe that

pi =
|(T \ T ′) \ S|
|E(G) \ S|

⩽
|(T \ T ′) \ S|
|(T ∪ T ′) \ S|

From Invariant (i), it follows that |(T \ T ′) \ S| = n−1−aj−xj , where aj is the
number of edges that have been accepted after j edges have had their weights
revealed, i.e., the number of edges in T ∩ T ′ ∩ S, and xj is the number of edges
in T ∩ T ′ \ S. Then,

pi ⩽
n− 1− xj − aj
|(T ∪ T ′) \ S|

.

Now,

|(T ∪ T ′) \ S| = |T ∪ T ′| − |(T ∪ T ′) ∩ S| .

For any 0 ⩽ i ⩽ n− 2,

|T ∪ T ′| = |T |+ |T ′| − |T ∩ T ′| = 2n− 2− xj − aj ,

and |(T ∪ T ′) ∩ S| = |(T \ T ′) ∩ S|+ |T ′ ∩ S| = |T ′ ∩ S| = i.

Here the second to last equality follows from Invariant (i), and the last equality
follows from the definition of i. Hence,

pi ⩽
n− 1− xj − aj

2n− 2− i− xj − aj
.

Using that aj + xj ⩾ 0 and i ⩽ n− 1, it follows that

pi ⩽
n− 1

2n− 2− i
.

The only time we add two edges to EBlame is when enext ∈ T \T ′ and f(enext) ̸∈
(T ′ \ T ) ∩ S. For each i = 0, 1, . . . , n − 2, the probability that enext is in T \ T ′

is pi. In any other case, we add at most one edge to EBlame.
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Note that i is the size of the set of edges, e, for which either w(e) has been
revealed or w(f(e)) but not w(e) has been revealed. If the weight of f(e) but
not that of e has been revealed, then w(e) − w(f(e)) is accounted for in Case
enext ∈ T ′ \ T , Subcase (reject), where enext = f(e). Therefore, when i = n− 1,
all edges in TGFtP,σ have been accounted for, and so we can compute the size of
EBlame. We obtain

Eσ[|EBlame|] ⩽
n−2∑
i=0

(1 + pi) ⩽
n−2∑
i=0

(
1 +

n− 1

2n− 2− i

)
⩽ (n− 1)(1 + ln(2)),

where the last inequality follows from Lemma 3.

Since the prediction error of any edge is only used to upper bound incurred cost
once, and since the average of the n − 1 largest prediction errors upper bound
the average prediction error of any set of (n− 1)(1+ ln(2)) edges, it follows that

Eσ[GFtP(ŵ, w, σ)−Opt(w)] ⩽ (1 + ln(2))η,

so

Eσ[GFtP(ŵ, w, σ)]

Opt(w)
⩽ 1 + (1 + ln(2))ε,

and, hence, rorGFtP(ε) ⩽ 1 + (1 + ln(2))ε. ⊓⊔

5 Open Problems

An obvious open problem is to determine the exact random order ratio ofGFtP,
in the range 1 + ε to 1 + ln(2)ε.

GFtP can be seen as an improvement of FtP, and we are interested in what we
believe could be a further improvement: In addition to accepting some edges that
are not in the chosen minimum spanning tree based on predictions, also reject
some that are in that tree, if the actual weight is higher than the predicted.
The obvious approach gives an algorithm with a worse competitive ratio than
FtP’s, but restricting which edges the algorithm can accept after such a rejection
gives rise to another optimal algorithm under competitive analysis. It would be
interesting to apply random order analysis to such an algorithm as well.

More generically, it would be interesting to apply random order analysis to other
online problems with predictions, as well as to consider error measures similar
to ours for other problems.
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