Noname manuscript No.
(will be inserted by the editor)

Advice Complexity of Priority Algorithms

Allan Borodin - Joan Boyar -
Kim S. Larsen - Denis Pankratov

Received: date / Accepted: date

Abstract The priority model of “greedy-like” algorithms was introduced by
Borodin, Nielsen, and Rackoff in 2002. We augment this model by allowing pri-
ority algorithms to have access to advice, i.e., side information precomputed
by an all-powerful oracle. Obtaining lower bounds in the priority model with-
out advice can be challenging and may involve intricate adversary arguments.
Since the priority model with advice is even more powerful, obtaining lower
bounds presents additional difficulties. We sidestep these difficulties by devel-
oping a general framework of reductions which makes lower bound proofs rela-
tively straightforward and routine. We start by introducing the Pair Matching
problem, for which we are able to prove strong lower bounds in the priority
model with advice. We develop a template for constructing a reduction from
Pair Matching to other problems in the priority model with advice — this part

The first author was supported by the Natural Sciences and Engineering Research Council of
Canada. The second and third authors were supported in part by the Independent Research
Fund Denmark, Natural Sciences, grant DFF-7014-00041. A preliminary version of this
paper was presented at WAOA 2018 [8]. This journal version is extended significantly more
than 30% and contains more details in general, proofs of all theorems, and new sections on
Maximum Cut, Maximum Satisfiability, Job Scheduling, and Vertex Cover.

A. Borodin
Department of Computer Science, University of Toronto, Toronto, Canada, E-mail:
bor@cs.toronto.edu

J. Boyar
Department of Mathematics and Computer Science, University of Southern Denmark,
Odense, Denmark, E-mail: joan@imada.sdu.dk

K. S. Larsen

Department of Mathematics and Computer Science, University of Southern Den-
mark, Odense, Denmark, ORCID: 0000-0003-0560-3794, Tel.: +45 6550 2328, E-mail:
kslarsen@imada.sdu.dk,

D. Pankratov
Department of Computer Science & Software Engineering, Concordia University, Montreal,
Canada, E-mail: denis.pankratov@concordia.ca

2 Borodin, Boyar, Larsen, and Pankratov

is technically challenging since the reduction needs to define a valid priority
function for Pair Matching while respecting the priority function for the other
problem. Finally, we apply the template to obtain lower bounds for a number
of standard discrete optimization problems.

Keywords Priority algorithms - Advice complexity - Greedy algorithms -
Optimization problems

1 Introduction

Greedy algorithms are among the first class of algorithms studied in an un-
dergraduate computer science curriculum. They are among the simplest and
fastest algorithms for a given optimization problem, often achieving a reason-
ably good approximation ratio, even when the problem is NP-hard. In spite
of their importance, the notion of a greedy algorithm is not well-defined. This
might be satisfactory for studying upper bounds; when an algorithm is sug-
gested, it does not matter much whether everyone agrees that it is greedy or
not. However, lower bounds (inapproximation results) require a precise def-
inition. Perhaps giving a precise definition for all greedy algorithms is not
possible, since one can provide examples that seem to be outside the scope of
the given model.

Setting this philosophical question aside, we follow the model of greedy-like
algorithms due to Borodin, Nielsen, and Rackoff [11]. The fized priority model
captures the observation that many greedy algorithms work by first sorting
the input items according to some priority function, and then, during a single
pass over the sorted input, making online irrevocable decisions for each input
item. This model is similar to the online algorithm model with an additional
preprocessing step of sorting inputs. Of course, if any sorting function is al-
lowed, this would trivialize the model for most applications. Instead, a total
ordering on the universe of all possible input items is specified before any in-
put is seen, and the sorting is done according to this ordering, after which the
algorithm proceeds as an online algorithm. This model has been adopted with
respect to a broad array of topics, including the classic graph problems [2,15,
7,3], makespan minimization [29], satisfiability [27], auctions [10], and general
results, present in many of the above contributions as well as in [20]. In spite of
its appeal, there are relatively few lower bounds in this model. There does not
seem to be a general method for proving lower bounds; that is, the adversary
arguments tend to be ad-hoc.

The assumption that an algorithm does not know anything about the input
is quite pessimistic in practice. This issue has been addressed recently in the
area of online algorithms by considering models with advice (see [12] for an
overview). In these models, side information, such as the number of input
items or a maximum weight of an item, is computed by an all-powerful oracle
and is available to an algorithm before seeing any of the input items. This
information is then used to make better online decisions. The goal is to study
trade-offs between advice length and the competitive ratio.

Advice Complexity of Priority Algorithms 3

We introduce a general technique for establishing lower bounds on priority
algorithms with advice. These algorithms are a simultaneous generalization
of priority algorithms and online algorithms with advice. Our technique is
inspired by the recent success of the binary string guessing problem and re-
ductions in the area of online algorithms with advice. We identify a difficult
problem (Pair Matching) that can be thought of as a sorting-resistant version
of the binary string guessing problem. Then, we describe the template of gad-
get reductions from Pair Matching to other problems in the world of priority
algorithms with advice. This part turns out to be challenging, mostly because
one has to ensure that priorities are respected by the reduction. We then ap-
ply the template to a number of classic optimization problems. We restrict
our attention to the fixed priority model. Note that we consider deterministic
algorithms unless otherwise specified.

Related model. Fixed priority algorithms with advice can be viewed in terms
of the fixed priority backtracking model of Alekhnovich et al. [1]. That model
starts by ordering the inputs using a fixed priority function and then exe-
cutes a computation tree where different decisions can be tried for the same
input item by branching in the tree, and then choosing the best result. The
lower bound results generally consider how much width (maximum number of
nodes for any fixed depth in the tree) is necessary to obtain optimality where
the width proven is often of the form 2°("). In contrast, our results give a
parameterized trade-off between the number of advice bits and the approxi-
mation (competitive) ratio. However, given an algorithm in the fixed priority
backtracking model, the logarithm of the width gives an upper bound on the
number of bits of advice needed for the same approximation ratio. Similarly,
a lower bound on the advice complexity gives a lower bound on width.

Organization. We give a formal description of the models in Section 2. We
motivate the study of the priority model with advice in Section 3. We introduce
and analyze the Pair Matching problem in Section 4. We describe the reduction
framework for obtaining lower bounds in Section 5 and apply it to classic
problems in Section 6. We conclude in Section 7.

2 Preliminaries

We consider optimization problems for which we are given an objective func-
tion to minimize or maximize, and measure our success relative to an optimal
offline algorithm.

Online Algorithms with Advice. In an online setting, the input is revealed one
item at a time by an adversary. An algorithm makes an irrevocable decision
about the current item before the next item is revealed. For more background
on online algorithms, we refer the reader to the texts by Borodin and El-
Yaniv [9] and Komm [19].

4 Borodin, Boyar, Larsen, and Pankratov

The vanilla online model assumes no prior knowledge about input items
other than the domain they are coming from. In practice, the algorithm de-
signer may have some additional knowledge, such as the number of input items,
the largest weight of an input item, some partial solution based on historical
data, to name a few examples. The advice tape model for online algorithms [6]
captures the notion of side information in a purely information-theoretic way
as follows. An all-powerful oracle that sees the entire input prepares the in-
finite advice tape with bits, which are available to the algorithm during the
entire process. The oracle and the algorithm work in a cooperative mode — the
oracle knows how the algorithm will use the bits and is trying to maximize the
usefulness of the advice with regards to optimizing the given objective func-
tion. The advice complexity of an algorithm is a function of the input length
and is the number of bits read by the algorithm in the worst case for inputs of
a given size. For more background on online algorithms with advice, see the
survey by Boyar et al. [12].

Fized Priority Model with Advice. Fixed priority algorithms can be formulated
as follows. Let U be a universe of all possible input items. An input to the
problem consists of a finite set of items Z C U satisfying some consistency
conditions. The algorithm specifies a total order on U before seeing the in-
put. Then, a subset of the possible input items is revealed (by an adversary)
according to the total order specified by the algorithm. The algorithm makes
irrevocable decisions about the items as they arrive.! The overall set of deci-
sions is then evaluated according to some objective function. The performance
of the algorithm is measured by the asymptotic approximation ratio with re-
spect to the value provided by an optimal offline algorithm. The notion of
advice is added to the model as follows. After the algorithm has chosen a total
order on U, an all-powerful oracle that has access to the entire input Z creates
a tape of infinitely many bits. The algorithm knows how the advice bits are
created and has access to them during the online decision phase. Our interest
is in how many bits of advice the algorithm uses compared with the result it
obtains.

We consider only countable universes /. In this case, having a total order
on elements in U is equivalent (via a simple inductive argument) to having a
priority function P : U — R. The assumption of the universe being countable
is natural, but also necessary for the above equivalence: there are uncountable
totally ordered sets that do not embed into the reals with the standard order?

1 In the adaptive priority model, the algorithm is allowed to specify a new ordering de-
pending on previous items and decisions before a new input item is presented.

2 Consider D = R x R with the lexicographic ordering. Assume to the contrary that f
is an order-embedding mapping from D to R. Then each subset of D of the form r x R,
where r € R, has to be mapped into an interval of R which is disjoint from any other subset
" X R for r # r’. Thus, f defines an uncountable number of disjoint intervals of R. At
the same time, between any two reals, we can find a rational number (by considering the
position where the two reals differ for the first time). Using this on the end points of the
intervals above, each interval must contain a rational number which does not appear in

Advice Complexity of Priority Algorithms 5

Definition 1 Let U be the universe of input items and let P : i/ — R be a
priority function. For uy,us € U, we write u; <p ug to mean P(uy) < P(usg).
Larger priority means that the item appears earlier in the input, i.e., u; <p ug
means that uy appears before u; when the input is given according to P.

Ezample. Kruskal’s optimal algorithm for the minimum spanning tree problem
is a fixed priority algorithm without advice. The universe of items is U =
N x N x Q. An item (7, j,w) € U represents an edge between a vertex ¢ and a
vertex j of weight w. The consistency condition on the input is that the edge
{4,j} can be present at most once in the input. The total order on the universe
is specified by all items of smaller weight having higher priority than all items
of larger weight, breaking ties, say, by lexicographic order on the names of
vertices. Kruskal’s algorithm processes input items in the order just described
and greedily accepts those items that do not result in cycles.

In this paper, we only consider the vertex arrival, vertex adjacency input
model for graph problems in the priority setting: an input item consists of a
name of a vertex together with a set of names of adjacent vertices. There is
a consistency condition on the entire input: if u appears as a neighbor of v,
then v must appear as a neighbor of u.

Binary String Guessing Problem. Later we introduce the Pair Matching prob-
lem that can be viewed as a priority model analogue of the following online
binary string guessing problem.

Definition 2 The Binary String Guessing Problem [4] with known history
(2-SGKH) is the following online problem. The input consists of (n,o0 =
(z1,...,2n)), where z; € {0,1}. Upon seeing z1, . .., x;_1 an algorithm guesses
the value of z;. The actual value of x; is revealed after the guess. The goal is
to maximize the number of correct guesses.

Bockenhauer et al. [4] provide a trade-off between the number of advice
bits and the approximation ratio for the binary string guessing problem.

Theorem 1 (Bockenhauer et al. [4]) For the 2-SGKH problem and any
e € (0, 3], no online algorithm reading fewer than (1 — H(g))n advice bits can
make fewer than en mistakes for large enough n, where H(p) = H(1 — p) =
—plog(p) — (1 — p)log(1 — p) is the binary entropy function.

Competitive and Approximation Ratios. The performance of online algorithms
is measured by their competitive ratios. For a minimization problem, an online
algorithm ALG is said to be c-competitive if there exists a constant a such
that for all input sequences I we have ALG(I) < ¢cOPT(I)+ «, where ALG(I)
denotes the cost of the algorithm on I and OPT(I) is the value achieved by an
offline optimal algorithm. The infimum of all ¢ such that ALG is c-competitive

any other interval. Thus, there are an uncountable number of rational numbers, which is a
contradiction. (This argument appears in [22].)

6 Borodin, Boyar, Larsen, and Pankratov

is ALG’s competitive ratio. For a maximization problem, ALG(I) is referred
to as profit, and we require that OPT(I) < ¢ALG(I) + «. In this way, we
always have ¢ > 1 and the smaller c is, the better the competitive ratio of the
algorithm is. Thus, upper bounds and the use of O-notation indicate positive
results and lower bounds and the use of {2-notation indicate negative results.
Priority algorithms are thought of as approximation algorithms and the term
(asymptotic) approximation ratio is used (but the definition is the same).

3 Motivation

In this section we present a motivating example for studying the priority model
with advice. We present a problem that is difficult in the pure priority setting
or in the online setting with advice, but easy in the priority model with advice.
Furthermore, the advice is easily computed by an offline algorithm, which can
act as an oracle.

The problem of interest is called Greater Than Mean (GTM). In the GTM
problem, the input is a sequence x1,...,z, of rational numbers. Let m =
>, xi/n denote the mean of the sequence. The goal of an algorithm is to
decide for each x; whether z; is greater than the mean or not, answering
“accept” or “reject”, respectively.

We assume that the length of the sequence, n, is known to the algorithm
in advance. This is a reasonable assumption since we are dealing with approx-
imation algorithms. Thus, the entire input is available from the beginning. We
are merely restricting our focus on algorithms to a simple, greedy-like class.
Without that assumption, we can give the value n using O(log n) bits of advice.

We start by noting that there is a trivial optimal priority algorithm with
little advice for this problem.

Theorem 2 For Greater Than Mean, there exists a fized priority algorithm
reading at most [logn] advice bits, solving the problem optimally.

Proof The priority order is such that xy > z5... > x,. Thus, the numbers
arrive in the order from largest to smallest. The advice specifies the earliest
index i € [n] such that z; < m. O

Next, we show that a priority algorithm without advice has to make many

€rrors. 3

Theorem 3 For Greater Than Mean and any € € (0, %}, no fixed priority
algorithm without advice can make fewer than (1/2 — e)n mistakes for large
enough n.

3 In Theorem 3 and in all of our lower bound advice results, we state the result so as
to include ¢ = %, in which case the conditions “fewer than (1/2 — ¢)” and “fewer than
(1 — H(e))” make the statements vacuously true.

Advice Complexity of Priority Algorithms 7

Proof Let ALG be a fixed priority algorithm without advice for the GTM
problem. Let P be the corresponding priority function. For simplicity, we as-
sume that repeated items must occur consecutively when ordered according
to P. We show how to get rid of the consecutive repeated items assumption in
the remark immediately following this proof. Consider integers in the interval
[0,2]. One of the following two cases must occur:

Case 1: there exists ¢,j € [0,2] such that ¢ < j and j >p . Consider the
behavior of the algorithm on the input where j is presented n — 1 times first. If
the algorithm answers “accept” on the majority of these n — 1 requests, then
the last element is set to j, ensuring that all the 1 answers were incorrect. If
the algorithm answers “reject” on the majority, then the last element is set
to i, ensuring that all the “reject” answers were incorrect. In either case, the
algorithm makes at least (n — 1)/2 mistakes.

Case 2: the priority function on the interval [0,2] is 0 >p 1 >p 2. Consider
the behavior of the algorithm on the input where the first item is 0 and the
following n — 2 items are set to 1. If an algorithm answers “accept” on the
majority of the n — 2 items, then the last item is 2. Thus, the mean is 1,
ensuring that all the “accept” answers on the items with value 1 are incorrect.
If an algorithm answers “reject” on the majority of the n — 2 items, then the
last item is 1. Thus, the mean is strictly smaller than 1, ensuring that all the
“reject” answers of the algorithm on the 1 items are incorrect. In either case,
the algorithm can be made to produce errors on (n — 2)/2 items, which is at
least (1/2 —e)n for n > 1/e. O

Remark 1 Suppose that we allow repeated input items to appear non-conse-
cutively when ordered according to P. Formally, this can be modeled by the
universe Q x N. The input item (z, id) consists of a rational number z, called
the value of an item, and its identification number id. Input to the GTM
problem is a subset of Q x N. The GTM problem is defined entirely in terms
of values of input items, and repeated values are distinguished by their id. Fix
a priority function P and choose n different items of value 1, i.e., iq,...,0,.
Suppose that we have an item of value 0 that is of higher priority than any of
the i; and an item of value 2 that is of lower priority than any of the i;. Then
we can repeat the argument of Case 2 from the proof above.

Otherwise, pick 2n + 1 distinct items of value 1. Call them i1, 19, ..., 42,41
in the decreasing order of priorities. For items 4,41, ..., i2, either (a) there is
no item of value 0 of higher priority than all of them, or (b) there is no item
of value 2 of lower priority than all of them (otherwise, it is covered by the
previous case). To handle (a), pick an arbitrary item of value 0. This item has
lower priority than 4,11, and, in particular, lower priority than all of i1, ..., y,.
This can be handled similarly to Case 1 in the proof above. Thus, the only
scenario left is (b) when there is no item of value 2 of lower priority than all of
Int1y .-« l2n. Pick n arbitrary items of value 2 — they all have priority higher
than is,41. Thus, this can again be handled similarly to Case 1 in the proof
above.

8 Borodin, Boyar, Larsen, and Pankratov

Finally, we show that an online algorithm requires a lot of advice to achieve
good performance for the GTM problem. The proof is a minor modification
of a reduction from 2-SGKH to the Binary Separation Problem (see [13] for
details). We present the proof in its entirety for completeness.

Theorem 4 For the Greater Than Mean problem and any e € (0, %], no online
algorithm reading fewer than (1—H (g))(n—1) advice bits can make fewer than
en mistakes for large enough n.

Proof We present a reduction from the 2-SGKH problem to the GTM problem.
Let ALG be an online algorithm with advice for the GTM problem. Our
reduction is presented in Algorithm 1. In the course of the reduction, an online
input x1, ..., Z, of length n for the 2-SGKH problem is converted into an online
input y1,...,yn+1 of length n 4+ 1 for the GTM problem with the following
properties: The number of advice bits is preserved and for each i € [n], our
reduction algorithm for 2-SGKH makes a mistake on x; if and only if ALG
makes a mistake on y;. This would finish the proof of the theorem.

Let S={i€[n]|x; =1} and T = [n] \ S. The reduction uses a technique
similar to binary search to make sure that V¢ € S and Vj € T' we have y; > y;,
i.e., all the y; corresponding to x; = 1 are larger than all the y; corresponding
to z; = 0. Then y, 41 is chosen to make sure that the mean of the entire
subsequence yi,...,yn+1 lies between the smallest y; with ¢ € S and the
largest y; with j € T'. This implies that y; is greater than the mean if and
only if the corresponding x; = 1.

Algorithm 1 Reduction from 2-SGKH to GTM

procedure REDUCTION-2-SGKH-TO-GTM
51 < 0, up 1
fori=1ton do
yi < (6 +ug)/2
if ALG predicts y; is greater than mean then
predict x; =1
else
predict z; =0

receive actual x;
if actual z; = 1 then
Uil < Yi, biv1 < &5
else
Wip1 — Us, Lip1 — Yi

Ynt1 < g1 +unt1) — X0 wi

The following invariants are easy to see: (1) w; > ¢;; (2) if ©; = 1, then
Ui > Yi 2> Wit1; (3) if x; =0, then ¢; < y; < £i+1.

For (1), it holds initially for ¢ = 1, and for ¢ > 1, one of u;4+1 and [;11 gets
the values which is the average of I; and wu;; if [;41 gets the average, u; 1 gets
the higher value, u;, and if u; 1 gets the average, [;11 gets the lower value, [;.
For (2), the first inequality holds since y; is the average of u; and the smaller

Advice Complexity of Priority Algorithms 9

value, [;, and the second inequality holds since u; 1 is given the value y; when
x; = 1. For (3), the first inequality holds since y; is the average of I; and the
larger value, u;, and the second inequality holds since /;11 is given the value
y; when x; = 0.

The required properties of the reduction follow immediately from the in-
variants. Let « € S and j € T. Then, y; > up41 > €p41 > y;. Finally, observe
that y,41 is chosen so that the mean is Z?;ll yi/(n+1)=3"yi/(n+1)+
Ynt+1/(n + 1) = (1/2)(bp41 + tny1). This mean correctly separates S from
T. O

Note that this result shows that a linear amount of advice is necessary to
ensure that fewer than cn mistakes are made for ¢ < %

4 Pair Matching Problem

We introduce an online problem called Pair Matching.* The input consists of
a sequence of n distinct rational numbers between 0 and 1, i.e., x1,...,x, €
Q N [0,1]. After the arrival of z;, an algorithm has to answer if there is a
j € [n]\ {i¢} such that ; + z; = 1, in which case we refer to z; and z; as
forming a pair and say that x; has a matching value, x;. The answer “accept”
is correct if x; exists, and “reject” is correct if it does not. Note that since
the x; are all distinct, if x; = %, the correct answer is “reject”, since % cannot
have a matching value.

We let pairs(xy, ..., x,) denote the number of pairs in the input 1, ..., z,.

4.1 Online Setting

Analyzing Pair Matching in the online setting is relatively straightforward for
both deterministic and randomized algorithms.

We start with a simple upper bound achieved by a deterministic online
algorithm.

Theorem 5 For Pair Matching, there exists a 2-competitive online algorithm,
answering correctly on n — pairs(zy, ..., Ty,) input items.

Proof The algorithm works as follows: suppose the algorithm has already given
answers for items 21, ...,x;_1, and a new item x; arrives. If there isa j € [i—1]
such that x; + z; = 1, then the algorithm answers “accept”. Otherwise, the
algorithm answers “reject”.

Observe that the algorithm always answers correctly on any item which is
not one of the items of a pair. There are n — 2 - pairs(zy,...,x,) such items.
Moreover, it always answers correctly on exactly a half of all items that form

4 There are similarities to the NP-Complete problems, Numerical Matching with Target
Sums and Numerical 3-Dimensional Matching, though these problems ask if permutations
of sets of inputs will lead to a complete matching.

10 Borodin, Boyar, Larsen, and Pankratov

pairs — namely, it answers incorrectly on the first item from a given pair and
answers correctly on the second item from the given pair. Thus, the algorithm
gives pairs(zy, . .., T,) correct answers in addition to the n—2-pairs(zy, ..., z,)
answers given correctly on items not forming pairs. The total number of cor-
rect answers is n — pairs(xy,...,x,). Observe that pairs(zy,...,x,) < n/2.
Thus, this simple online algorithm gives correct answers on at least n/2 items,
achieving competitive ratio of at most 2. O

Next, we show that the above upper bound is actually tight.

Theorem 6 For Pair Matching, no deterministic online algorithm can achieve
a competitive ratio less than 2.

Proof Let ALG be a hypothetical deterministic algorithm for Pair Matching.
The adversary keeps track of the current pool of possible inputs X. Initially,
X = Qn[0,1]. The adversary picks an arbitrary number = € X as the first
input item. Depending on how ALG answers on x there are two cases.

Case 1: If ALG answers “reject” on x, then the adversary picks 1 — x as
the next input item. One can assume that ALG answers correctly on 1 — z.
Then, the adversary removes x and 1 — x from X and proceeds.

Case 2: If ALG answers “accept” on z, then the adversary removes z and
1 —z from X (thus, the matching value 1 — z is never given) and proceeds.

Observe that in Case 1 the algorithm makes mistakes on 1/2 of the sub-
input corresponding to that case. In Case 2, removing = and 1 — z from X
ensures that x is not part of a pair in the input. Thus, the algorithm makes
mistakes on the entire sub-input corresponding to Case 2. g

Next, we analyze randomized online algorithms for Pair Matching. A mod-
ification of the simple deterministic algorithm results in a better competitive
ratio.

Theorem 7 For Pair Matching, there exists a randomized online algorithm
that in expectation answers correctly on 2n/3 input items.

Proof Let a € [0,1] be a parameter to be specified later. Intuitively, o denotes
the probability with which our algorithm is going to answer “reject” on input
items which are not obviously part of a pair. More specifically, suppose that
the algorithm has already given answers for items z1,...,z;_1, and a new item
x; arrives. If there is a j € [¢ — 1] such that z; + z; = 1, then the algorithm
answers “accept”. Otherwise, the algorithm answers “reject” with probability
a. We can analyze the performance of the algorithm by analyzing the following
three groups of input items:

Input items that are not part of a pair: There are n—2-pairs(x1, ..., x,) such
input items and the algorithm answers correctly on a(n—2-pairs(zy, ..., xy))
in expectation.

Input items that are the first of a pair: There are pairs(xy, . .., x,) such input
items and the algorithm answers correctly on (1 — «) pairs(zy,...,zy,) of
them in expectation.

Advice Complexity of Priority Algorithms 11

Input items that are the last of a pair: There are pairs(xy, ..., x,) such input
items and the algorithm answers correctly on all of them.

Thus, in expectation the algorithm gives correct answers on

a(n — 2 pairs(z1, ..., z,)) + (1 — @) pairs(zy, . .., xp) + pairs(zy, ..., z,)
= an — (3a — 2) pairs(x1,...,Ty)
items. Note that as long as o > 2/3, we can use the bound pairs(xy,...,T,) <

n/2 to derive a lower bound of an — (3a — 2)n/2 on the number of correct
answers, and the largest value, 2n/3, is attained for o = 2/3. Values of « less
than 2/3 give poorer results for the case when there are no pairs. ad

Next, we show that the above algorithm is an optimal randomized algo-
rithm for Pair Matching.

Theorem 8 For Pair Matching, no randomized online algorithm can achieve
a competitive ratio less than 3/2.

Proof Let ALG be a hypothetical randomized algorithm for Pair Matching.
An adversary keeps track of the current pool of possible inputs X. Initially,
X = QnJ0,1]. An adversary picks an arbitrary number x € X as the first input
item. Let p be the probability that ALG answers “reject” on x. Depending on
the value of p, there are two cases.

Case 1: p > 2/3, then the adversary picks 1 — x as the next input item.
One can assume that ALG answers correctly on 1 — x. Then, the adversary
removes z and 1 — x from X and proceeds.

Case 2: p < 2/3, then the adversary removes z and 1 — = from X and
proceeds.

Observe that in Case 1, the algorithm is given two input items and it
answers correctly on (1 —p) 41 =2 — p input items in expectation. Thus, the
fraction of correct answers is 1 —p/2 <1—1/3 =2/3.

In Case 2, removing = and 1 —z from X ensures that x is not part of a pair
in the input. Thus, the algorithm answers correctly on p < 2/3 of the input in
this case in expectation. a

Finally, we prove that online algorithms need a lot of advice in order to
start approaching a competitive ratio of 1 for Pair Matching.

Theorem 9 For Pair Matching and any € € (0, %}, no deterministic online

algorithm reading fewer than (1 — H(g))n/2 advice bits can make fewer than
en mistakes for large enough n.

Proof We prove the statement by a reduction from the 2-SGKH problem. Let
ALG be an online algorithm solving Pair Matching. Fix an arbitrary infinite
sequence of distinct rational numbers (y;)$2, from QN [0, 1].

Let x1,...,x, be the input to 2-SGKH. The online reduction works as
follows. Suppose that we have already processed x1,...,z;—1 and we have to
guess the value of z;. We query ALG on y;. If ALG answers that y; is a part of

12 Borodin, Boyar, Larsen, and Pankratov

a pair, then the reduction algorithm predicts x; = 1; otherwise, the reduction
algorithm predicts x; = 0. Then the actual value of x; is revealed. If the actual
value is 1, then the reduction algorithm feeds 1 — y; as the next input item
to ALG. We assume that ALG answers correctly on 1 — y; in this case. If the
actual value of x; is 0, the algorithm proceeds to the next step.

Note that the number of mistakes that the reduction algorithm makes is
exactly equal to the number of mistakes that ALG makes. The statement of
the theorem follows by observing that the input to ALG is of length at most
2n. g

4.2 Priority Setting

In this section, we show that Theorem 9 also holds in the priority setting. The
proof becomes a bit more subtle, so we give it in full detail.

Theorem 10 For Pair Matching and any € € (0, %], no fized priority algo-
rithm reading fewer than (1 — H(g))n/2 advice bits can make fewer than en
mistakes for large enough n.

Proof We prove the statement by a reduction from the online problem 2-
SGKH. Let ALG be a priority algorithm solving Pair Matching, and let P be
the corresponding priority function. (Note that we assume that the reduction
algorithm knows P; this is the case in all of our priority algorithm reductions.)
The reduction follows the proof of Theorem 9 closely. The idea is to transform
the online input to 2-SGKH into an input to Pair Matching. The difficulty
arises from having to present the transformed input in the online fashion while
respecting the priority function P.

Let x1,...,z, be the input to 2-SGKH. The online reduction algorithm

picks n distinct numbers y1, . .., y,, from [0, 1]\ {3} and creates a list 21, ..., 22,
consisting of y; and 1 — y; sorted according to P. The actual input to ALG
will be a subsequence of zq,..., 25, that will be constructed online as inputs

Z1,...,T, get processed. The high level idea is that if x; = 1, then both z and
1 — z should be present in the input to ALG, and if z; = 0, only z should be
present in the input without the matching 1 — z. Thus, the answer of ALG
on z can be used by the reduction algorithm to guess the value of x; before
learning what it actually is. After learning the value of x;, the reduction will
either “remember” to include 1—z as input to ALG at a later point, or remove
1 — z from further consideration. In order to help create input for ALG, we
introduce two data structures:

— Z is a subsequence that is initialized to z1,..., z9,. After processing each
x;, the first element z of Z, as well as its matching pair element 1 — z,
get removed from Z. Thus, the online reduction algorithm uses Z to keep
track of candidate pairs to be fed to ALG, where the first elements of these
pairs are guaranteed to be in correct order.

Advice Complexity of Priority Algorithms 13

— @ is a (max-heap ordered) priority queue. After processing each z; and
removing both z and 1 — 2z from Z, the reduction might have to include
1 — z as input to ALG at a later point. In this case, the reduction will
place 1 — z into . By maintaining) and checking the priority of its top
element, the reduction algorithm will be able to present 1 — z to ALG at
the right time. Thus, the online reduction algorithm uses @ as a set of
pending input elements sorted by their priority.

Next, we give the details for the above high-level description.

Initialization. Initially, @) is empty and Z is the entire sequence z1, . . ., za,.
Before the element x1 arrives, the algorithm feeds z; to ALG. If ALG answers
that z; is a part of a pair, then the online reduction algorithm predicts 1 = 1;
otherwise the reduction algorithm predicts z; = 0. Then the online algorithm
finds j such that z; = 1 — z; and updates Z by deleting 2z; and z;. Then z; is
revealed. If the actual value of x; is 1, the reduction algorithm inserts z; into
@; otherwise the reduction algorithm does not modify Q.

Middle step. Suppose that the reduction algorithm has processed the ele-
ments x1,...,2;—1 and has to guess the value of z;. The reduction algorithm
picks the first element z from the subsequence Z. While the top element of
@ has higher priority than z according to P, the reduction algorithm deletes
that element from the priority queue and feeds it to ALG. Then, the reduction
algorithm feeds z to ALG. The next steps are similar to the initialization case.
If ALG answers that z is a part of a pair, then the online reduction algorithm
predicts x; = 1; otherwise the reduction algorithm predicts x; = 0. The on-
line reduction algorithm finds 2z’ in Z such that z = 1 — 2/, and updates Z
by deleting z and z’. Then x; is revealed. If the actual value of z; is 1, the
reduction algorithm inserts z’ into @Q; otherwise the reduction algorithm does
not modify Q.

Post-processing. After the reduction algorithm finishes processing z,,, it
feeds the remaining elements (in priority order) from @ to ALG.

Observe that the reduction maintains the invariants that ZNQ =0, Z is
sorted according to P, @ is sorted according to P, and the highest priority
element between the top element of @ and first element of 7 is fed to ALG. It
follows that the online reduction algorithm feeds a subsequence of z1, ..., 29,
to ALG in the correct order according to P. In addition, the online reduction
algorithm makes exactly the same number of mistakes as ALG (assuming that
ALG always answers correctly on the second element of a pair). The statement
of the theorem follows since the size of the input to ALG is at most 2n. o

5 Reduction Template

Our template is restricted to binary decision problems since the goal is to
derive inapproximations based on the Pair Matching problem. (See also the
discussion in Section 6.2.) In our reduction from Pair Matching to a problem
B, we assume that we have a priority algorithm ALG with advice for problem
B with priorities defined by P. Based on ALG and P, we define a priority

14 Borodin, Boyar, Larsen, and Pankratov

algorithm ALG’ with advice (the reduction algorithm) and a priority function,
P’ for the Pair Matching problem. The reduction is advice-preserving, since
ALG’ only uses the advice that ALG does, no extra. Input items x1, xo, ..., 2,
in QN[0, 1] to Pair Matching arrive in an order specified by the priority function
we define, based on P. We assume that we are informed when the input ends
and can take steps at that point to complete our computation. Knowing the
size n of the input, which one naturally would in many situations after the
initial sorting according to P’, would of course be sufficient.

Based on the input to the Pair Matching problem, we create input items
to problem B, and they have to be presented to ALG, respecting the priority
function P. Responses from ALG are then used by ALG’ to help it answer
“accept” or “reject” for its current x;. Actually, ALG will always answer cor-
rectly for a request x; = 1 — ; when ¢ < j, so the responses from ALG are
only used when this is not the case. The main challenge is to ensure that the
input items to ALG are presented in the order determined by P, because the
decision as to whether or not they are presented needs to be made in time,
without knowing whether or not the matching value will arrive.

Here, we give a high level description of a specific kind of gadget reduction.
A gadget G for problem B is simply some constant-sized instance for B, i.e., a
collection of input items that satisfy the consistency condition for problem B.
For example, if B is a graph problem in the vertex arrival, vertex adjacency
model, G could be a constant-sized graph, and the universe then contains
all possible pairs of the form: a vertex name coupled with a list of possible
neighboring vertex names. Note that each possible vertex name exists many
times as a part of an input, because it can be coupled with many different
possible lists of vertex names. The consistency condition must apply to the
actual input chosen, so for each vertex name u which is listed as a neighbor of
v, it must be the case that v is listed as a neighbor of u.

The gadgets used in a reduction will be created in pairs (gadgets in a pair
may be isomorphic to each other, so that they are the same up to renaming),
one pair for each input item less than or equal to 1/2 (for z = 1/2, the gadget
will only be used to assign a priority to = 1/2). One gadget from the pair
is presented to ALG when 1 — x appears later in the input; and the other
gadget when it does not. Using fresh names in the input items for problem
B, we ensure that each input item less than % for the Pair Matching problem
has its own collection of input items for its gadgets for problem B. The pair
of gadgets associated with an input item z < 1/2 can be written as (G1, G2).
The same universe of input items is used for both of these gadgets.

We write maxp G to denote the first item according to P from the universe
of input items for G, i.e., the highest-priority item. For now, assume that
ALG responds “accept” or “reject” to any possible input item. This captures
problems such as vertex cover, independent set, clique, etc.

For each < 1/2, the gadget pair satisfies two conditions: the first item
condition, and the distinguishing decision condition. The first item condi-
tion says that the first input item mq(z) according to P gives no infor-
mation about which gadget it is in. To accomplish this, we define the pri-

Advice Complexity of Priority Algorithms 15

ority function for ALG' as P'(x) = P(maxpGl) for all x < 1/2 and set
mi(xr) = maxp GL = maxp G2 (the second equality holds since we assume
the two gadgets have the same input universe). The distinguishing decision
condition says that the decision with regards to item m;(x) that results in
the optimal value of the objective function in G} is different from the decision
that results in the optimal value of the objective function in G2. This explains
why the one gadget is presented to ALG when 1 —x appears later in the input
sequence and the other when it does not.

Now that the first item of the gadget associated with z is defined, the
remaining actual input items in the gadget pair for z must be completely
defined according to the distinguishing decision condition. This gives two sets
(overlapping, at least in mq(x)) of input items. The item with highest priority
among all of the items in the actual gadget pair, ignoring mq(z), is called
ma(z), and we define P'(1 — x) = P(maz(z)) for x < 1/2. Thus, we guarantee
the following list of properties: < 1/2 will arrive before 1 — x in the input
sequence for Pair Matching for ALG’, my (x) will arrive for algorithm ALG at
the same time as x arrives for ALG’, the response of ALG for m;(z) can define
the response of ALG’ to x, and the decision as to which gadget in the pair is
presented for x can be made at the time 1 — 2 arrives or ALG’ can determine
that it will not arrive (because either the input sequence ended or an z’ with
lower priority than 1 — z arrived).

To warm up, we start with an example reduction from Pair Matching
to Triangle Finding; a somewhat artificial problem in this context, but well-
studied in streaming algorithms [23], for instance. This reduction then serves
as a model for the general reduction template.

5.1 Example: Triangle Finding

Consider the following priority problem in the vertex arrival, vertex adjacency
model: for each vertex v, decide whether or not v belongs to some triangle (a
cycle of length 3) in the entire input graph. The answer “accept” is correct if v
belongs to some triangle, and otherwise the answer should be “reject”. We refer
to this problem as Triangle Finding. This problem might look artificial and it
is optimally solvable offline in time O(n?), but as mentioned above, advice-
preserving reductions between priority problems require subtle manipulations
of a priority function. The Triangle Finding problem allows us to highlight
this issue in a relatively simple setting.

Theorem 11 For Triangle Finding and any € € (0, %], no fized priority al-
gorithm reading at most (1 — H(g))n/8 advice bits can make fewer than en/4
mistakes.

Proof We prove this theorem by a reduction from the Pair Matching problem.
Let ALG be an algorithm for the Triangle Finding problem, and let P be the
corresponding priority function. Let x4, ..., x, be the input to Pair Matching.

16 Borodin, Boyar, Larsen, and Pankratov

We define a priority function P’ and a valid input sequence v1, ..., v,, to Tri-
angle Finding. When x1,...,z, is presented according to P’ to our priority
algorithm for Pair Matching, it is able to construct vy,...,v,, for ALG, re-
specting the priority function P. Moreover, our algorithm for Pair Matching
will be able to use answers of ALG to answer the queries about x1, ..., x,.
Now, we discuss how to define P’. With each number x € QN [0,1/2], we
associate four unique vertices vl,v2 v3 v}. The universe consists of all input
items of the form (v, {vd,v*}) with i, j, k € [4], i & {j, k} and j < k; there are
12 input items for each x: 4 possibilities for which vertex is v’, and for each of
them, (g) = 3 possibilities for the ordered pair of neighbors. Let mj(x) be the
first item according to P among the 12 items. Using only the input items from
the 12 items we are currently considering, we extend this item in two ways,
to a 3-cycle C2 and to a 4-cycle C2. When we write C2 or C, we mean the
set of items forming the 3-cycle or 4-cycle, respectively. Now, P’ is defined as

follows:

Pl(z) = P(mq(x)), if x < 1/2
maxge(cf,mucf,z)\{ml(1—-%)} P(g), OthGI‘WlSG

In other words, if x > 1/2, we set P’'(z) to be the first element other than
mi(1 —x) in C;_, UC}_,. In terms of our high level description given at
the beginning of this section, (C2,C%) form the pair of gadgets — a triangle
and a square (4-cycle). By construction, this pair of gadgets satisfies the first
item condition. By the definition of the problem, the optimal decision for all
vertices in C2 is “accept” (belongs to a triangle) and the optimal decision
for all vertices in C# is “reject” (does not belong to a triangle). Thus, these
gadgets also satisfy the distinguishing decision condition.

Let x4, ..., x, denote the order input items are presented to our algorithm
as specified by P’. Our algorithm constructs an input to ALG which is consis-
tent with P along the following lines: for each x < 1/2 that appears in the in-
put, the algorithm constructs either a three-cycle or a four-cycle (disjoint from
the rest of the graph). Thus, each < 1/2 is associated with one connected
component. During the course of the algorithm, each connected component
will be in one of the following three states: undecided, committed, or finished.
When = < 1/2 arrives, the algorithm initializes the construction with the item
mq (z) and sets the component status to undecided. It answers “accept” (there
will be a matching pair) for z if ALG responds “accept” (triangle) for mq(z),
and it answers “reject” if ALG responds “reject” (square).

Note that for any < 1/2, P'(x) > P'(1 — z), so if ' > 1/2 arrives and
1 — 2’ has not appeared earlier, ALG’ can simply reject 2’ and does not need
to present anything to ALG. If z has arrived and at some point 1 — z arrives,
the algorithm commits to constructing the 3-cycle C2. If ALG’ had guessed
correctly that 1 — would arrive, it is because ALG responded “accept” for
my(x) and also guessed correctly. If ALG’ had guessed that 1 — 2 would not
arrive, it is because ALG guessed that a square would arrive, and both guessed
incorrectly. If some 2’ arrives with P’(x') < P'(1 —) for some x # 2’ and
2 has arrived earlier, then ALG’ can be certain that 1 — z will not arrive. It

Advice Complexity of Priority Algorithms 17

commits to constructing the 4-cycle C2. Thus, if ALG" answered “reject” for
x, it answered correctly, and a square makes ALG’s decision for m1(x) correct.
Similarly, if ALG’ answered “accept” for z, it answered incorrectly, so a square
makes ALG’s decision incorrect.

At the end of the input, ALG’ finishes off by checking which values of x
have arrived without 1 — z arriving or some x’ with higher priority than 1 —x
arriving, and ALG again commits to the 4-cycle, as in the other case where
1 — x does not arrive.

Throughout the algorithm, there are several connected components, each
of which can be undecided, committed, or finished. Note that an undecided
component corresponding to input x consists of a single item m4(z). Upon
receiving an item y, the algorithm first checks whether some undecided com-
ponents have turned into committed ones: namely if an undecided component
consisting of my(z) satisfies P'(1 — z) > P’(y), it switches the status to a
committed component according to the rules described above. Then, the algo-
rithm feeds input items corresponding to committed yet unfinished connected
components to ALG and does so in the order of P up until the priority of such
items falls below P’(y) (this can be done by maintaining a priority queue). Fi-
nally, the algorithm processes the item y by either creating a new component
or by turning an undecided component into a decided one. Then, the algorithm
moves to the next item. Due to our definition of P’ and this entire process,
the input constructed for ALG is valid and consistent with P. Observe that
the input to ALG’ is of size at most 4n, so the number of advice bits must be
divided by four relative to Theorem 10, and the theorem follows. O

5.2 General Template

In this subsection, we establish two theorems that give general templates for
gadget reductions from Pair Matching — one for maximization problems and
one for minimization problems. A high level overview was given at the begin-
ning of this section.

We let ALG(I) denote the objective function for ALG on input I. The size
of a gadget G, denoted by |G|, is the number of input items specifying the
gadget. We write OPT(G) to denote the best value of the objective function
on G. Recall that we focus on problems where a solution is specified by making
an accept /reject decision for each input item. We write BAD(G) to denote the
best value of the objective function attainable on G after making the wrong
decision for the first item (the item with highest priority, max(G)), i.e., if there
is an optimal solution that accepts (rejects) the first item of G, then BAD(G)
denotes the best value of the objective function given that the first item was
rejected (accepted). We say that the objective function for a problem B is
additive, if for any two instances I; and I3 to B such that I; NI = @), we have
OPT(I; U Iy) = OPT(I;) + OPT(I3).

18 Borodin, Boyar, Larsen, and Pankratov

Theorem 12 Let B be a minimization problem with an additive objective
function. Let ALG be a fixed priority algorithm with advice for B with a pri-
ority function P. Suppose that for each x € QN [0,1/2] one can construct a
pair of gadgets (GL, G2) satisfying the following conditions:

The first item condition: m;(z) = maxp G = maxp G2.

The distinguishing decision condition: the optimal decision for mi(x) in G
is different from the optimal decision for my(x) in G2 (in particular, the
optimal decision is unique for each gadget). Without loss of generality, we
assume mq(x) is accepted in an optimal solution in GL.

The size condition: the gadgets have finite sizes; we let s = max,(|GL|,|G2]),
where the cardinality of a gadget is the number of input items it consists
of.

The disjoint copies condition: for x # y and i,j € {1,2}, input items making
up G and GJ, are disjoint.

The gadget OPT and BAD condition: the values

OPT(GL),BAD(GL), OPT(G2), BAD(G2)
are independent of x, and we denote them by

OPT(G'),BAD(G'),OPT(G?),BAD(G?);
we assume that OPT(G?) > OPT(G).

Define r = min{gggggig, gg?ggzg } Then for any € € (0,1), no fized prior-

ity algorithm reading fewer than (1 — H(e))n/(2s) advice bits can achieve an
approzrimation ratio smaller than

e(r — 1) OPT(GY)
eOPT(G') + (1 —¢) OPT(G?)’

1+

Proof The proof proceeds by constructing a reduction algorithm (fixed priority
with advice) for Pair Matching that uses ALG to make decisions about input
items. We start by defining a priority function for the reduction algorithm.

Define ma(z) to be the highest priority input item in GL or G2 different
from mq(z), i.e.,

ma(z) = max ((Gi U Gi) \ {m1(2)}).

We define a priority function P’ as follows.

Pa) = {P(ml(x)), if x <

M= N

P(ma(1 —x)),if x >

For the Pair Matching problem, we denote the given input sequence or-
dered by P’ as I = (21,...,x,). We have to give an overall strategy for how
the reduction algorithm for Pair Matching handles an input item x; and which
input items it presents to ALG. In order to do this, we use a priority queue

Advice Complexity of Priority Algorithms 19

@ which is a max-heap ordered based on the priority of input items to prob-
lem B, with the purpose of presenting these input items in the correct order
(respecting P, highest priority items appear first). When ALG’ commits to a
particular gadget in a pair, the remainder of that gadget (all inputs except
mq(x) which has already been presented) are inserted into Q. The reduction
algorithm is outlined in Algorithm 2.

Algorithm 2 Reduction Algorithm, ALG’
Given: ALG with priority function P for problem B

1: Q. init() > Initialize @ to empty
2: fori=1,...,ndo

3: if 2; > 1 then

4: if z; =1 — z; for some j < ¢ then

5: accept x;

6: insert Gclcj \ {m1(z;)} into @

7 else

8: reject x;

9: for all 1 <j <ist. P(zi—1)>P'(1—xj) > P'(z;) do >no l—axj
10: insert Gij \ {m1(z;)} into Q

11: while Q. findmaz() > P'(z;) do

12: present Q. deletemaz() to ALG

13: if z; < % then

14: present m1(z;) to ALG

15: answer the same as ALG

16: for all 1 < j <n s.t. P'(1 —z;) < P'(zn) do >no l—aj

17: insert Gij \ {m1(z;)} into Q

18: while not Q. isempty() do
19: present Q. deletemax() to ALG

By definition, P'(z;) > P’'(1—x;) for all z; < 1/2. Thus, m4 (z;) is presented
to ALG in Line 14 before the remaining parts of the same gadget associated
with x; are inserted into @ in one of Lines 6, 10, or 17.

Since the priority of any z; < % is defined to be the priority of m(z;), the
mq (z;)s are presented in the correct relative order.

Clearly, input items entered into @ are extracted and presented to ALG in
the correct relative order, and before any m;(x;) is presented, higher priority
items are presented first in Line 12. The remaining issues are whether the
remainder of the gadget associated with some z; is entered into () early enough
relative to some mq(z;) from another gadget and whether all gadgets are
eventually completely presented to ALG.

By the definition of mg, the priority of mo(x;) is at least the priority of
any remaining input item in the gadget associated with x;.

Consider the point in time when z; arrives. If 1 — x; arrived earlier or
P'(1—x;) is greater than P’(x;_), the gadget associated with z; would have
been processed correctly or have been inserted into @ earlier. Before m;(z;)
is presented to ALG, a check is made to see if P(mso(z;)) = P'(1 — ;) >

20 Borodin, Boyar, Larsen, and Pankratov

P'(x;) = P(m(z;)). If the check in the if-statement is positive, the entire
remaining part of gadget for z; is inserted into @) at this point in Line 10.

If some z; < % arrives, but 1 — x; never arrives, if P'(1 — z;) < P'(z,),
this is discovered in Line 16 and the remainder of Gij is presented to ALG in
Line 17.

Thus, input items are presented to ALG in the order defined by its priority
function P.

Now we turn to the approximation ratio obtained. We want to lower-bound
the number of incorrect decisions by ALG. We focus on the input items which
are my(x;) for some input x; < 1/2 to the Pair Matching Problem and assume
that ALG answers correctly on anything else.

When ALG' receives an x; < 1/2, in Line 15 it answers the same for
x; as ALG does for mq(z;). By considering the four cases where the gadget
associated with z; is later inserted into), we can see that this answer for z;
was correct for ALG if and only if the answer ALG gave for m1(z;) could lead
to the optimal result for the gadget associated with x;.

— If z; = 1 — x; arrives, then Gl‘ is committed to and the remainder of G1
is inserted into) in Line 6. If ALG’ answered “accept” to zj, then ALG
has accepted m;(z;) and ALG could obtain the optimal result on ij
the definition of these gadget pairs. If ALG" answered “reject” to z;, then
ALG has rejected mq(x;) and ALG cannot obtain the optimal result on
Gglcj7 again by the definition of these gadget pairs.

— If z; = 1 —x; does not arrive, then GQ, is committed to and the remainder
of G2 , s inserted into @ in Lines 10 or 17 If ALG’ answered “reject” to z;,
then ALG has rejected mq(x;) and ALG could obtain the optimal result
on G%j by the definition of these gadget pairs. If ALG’ answered “accept”
to ;, then ALG has accepted m1(z;) and ALG cannot obtain the optimal
result on Gij, again by the definition of these gadget pairs.

We know from Theorem 10 that for any e € (0,1/2], any priority algorithm
with advice length less than (1 — H(g))n/2 makes at least en mistakes. Since
we want to lower-bound the performance ratio of ALG, and since a ratio larger
than one decreases when increasing the numerator and denominator by equal
quantities, we can assume that when ALG answers correctly, it is on the gadget
with the larger OPT-value, G2. For the same reason, we can assume that the
“at least en” incorrect answers are in fact exactly en, since classifying some of
the incorrect answers as correct just lowers the ratio. For the incorrect answers,
assume that the gadget G is presented w times, and, thus, the gadget, G2,
en — w times.

Advice Complexity of Priority Algorithms 21

Denoting the input created by ALG’ for ALG by I, we obtain the following,
where we use that BAD(G?) > r OPT(GY).

ALG(I) (1—e)n OPT(G?)+w BAD(G!)+(en—w) BAD(G?)
OoPT(1) (1—e)n OPT(G?)+w OPT(GY)+(en—w) OPT(G?)
(1—e)n OPT(G?)+wr OPT(G")+(en—w)r OPT(G?)
(1—e)n OPT(G?)+w OPT(G')+(en—w) OPT(G?)
1+ w(r—1) OPT(GY)+(en—w)(r—1) OPT(G?)
w OPT(G')+(n—w) OPT(G?)

v

Taking the derivative with respect to w and setting equal to zero gives no
solutions for w, so the extreme values must be found at the endpoints of the
range for w which is [0, en].

Inserting w = 0, we get 1 4+ e(r — 1), while w = en gives

e(r —1) OPT(GY)

Lt COPT(G 1 (1 —2) OPT(C?)

The latter is the smaller ratio and thus the lower bound we can provide.
O

The following theorem for maximization problems is proved analogously.

Theorem 13 Let B be a mazimization problem with an additive objective
function. Let ALG be a fixed priority algorithm with advice for B with a pri-
ority function P. Suppose that for each x € QN [0,1/2] one can construct a
pair of gadgets (GL,G2) satisfying the conditions in Theorem 12. Then for
any € € (0, 1], no fiwed priority algorithm reading fewer than (1— H(e))n/(2s)
advice bits can achieve an approximation ratio smaller than

e(r — 1) OPT(GY)

L COPT(GY) + (1= 2)r OPT(G)’

" _ s [OPT(GY) OPT(G?)
where T = IMIN \ EAH(GT)> BAD(G?) [

Proof The proof proceeds as for the minimization case in Theorem 12 until

the calculation of the lower bound of 811;(%8 We continue from that point,

using the inverse ratio to get values larger than one.
We use that BAD(GY) < OPT(GY)/r.

OPT(I)
ALG(T)

(1—&)n OPT(G?)+w OPT(GY) +(en—w) OPT(G?)
(1—e)n OPT(G?)+w BAD(G!)+(en—w) BAD(G?)
(1—¢)n OPT(G?)+w OPT(G!)+(en—w) OPT(G?)
(1—e)n OPT(G2)+% OPT(G1)+ 2% OPT(G?)

Y

Y

Again, taking the derivative with respect to w gives an always non-positive
result. Thus, the smallest value in the range [0,en] for w is found at w = en.
Inserting this value, we continue the calculations from above:

22 Borodin, Boyar, Larsen, and Pankratov

OPT(I) (1—e)n OPT(G?)+w OPT(G')+(en—w) OPT(G?)
ALG(I) = (1-e)n OPT(G2)+% OPT(G!)+<2=% OPT(G?)
(1—e)n OPT(G?)+(en) OPT(G!)

(1—2)n OPT(G?)+ <2 OPT(GY)

(1—e)r OPT(G?)+er OPT(GY)

(1—e)r OPT(G?)+e OPT(G?1)

—1 e(r—1) OPT(GY)

= 1+ a—orort(amre orr@n

The latter is the smaller ratio and thus the lower bound we can provide.
O

We mostly use Theorems 12 and 13 in the following specialized form.

Corollary 1 With the set-up from Theorems 12 and 13, we have the following:
For a minimization problem, if OPT(G') = OPT(G?) = BAD(G!) —
1 = BAD(G?) — 1, then no fized priority algorithm reading fewer than (1 —

H(e))n/(2s) advice bits can achieve an approximation ratio smaller than 1+
OPT (G-

For a mazximization problem, if OPT(G') = OPT(G?) = BAD(G!) +
1 = BAD(G?) + 1, then no fized priority algorithm reading fewer than (1 —
H(e))n/(2s) advice bits can achieve an approximation ratio smaller than 1+

£
OPT(GT)—¢ "

Next, we describe a general procedure for constructing gadgets with the
above properties. For simplicity, we do it for graph problems in the vertex
arrival, vertex adjacency input model. Later we discuss what is required to
carry out such general constructions for other combinatorial problems. In the
case of graphs, an input item consists of a vertex name with the names of
neighbors of that vertex. First, consider defining a single gadget instead of a
pair. We define a gadget in several steps. As the first step, we define a graph

G = ([n],E C ([g])) over n vertices. Then, when defining a gadget based

on input z to Pair Matching, we pick n vertex names V, and give a bijection
f: Vi — [n]. Finally, we read off the resulting input items in the order given by
the priority function. Thus, we think of G as giving a topological structure of
the instance, and it is converted into an actual instance by assigning new names
to the vertices. The reason that the names from the topological structure are
not used directly is that we want to define a separate gadget instance for
each x € QN [0,1/2]. Thus, all gadget instances are going to have the same
topological structure,® but will differ in names of vertices.

For graphs in the vertex arrival, vertex adjacency model, we say that two
input items are isomorphic if they have the same number of neighbors, i.e.,
they differ in just the names of the vertices and the names of their neighbors.
A topological structure G consisting only of isomorphic items is a regular
graph. For any priority function P and any vertex v € [n], we can force the

5 However, both gadgets within a pair do not necessarily have the same topological struc-
ture. In Triangle Finding, they did not.

Advice Complexity of Priority Algorithms 23

corresponding item to appear first according to P by naming vertices appro-
priately. Fix x and consider all possible input items that can be formed from
V. consistently with G. One of those items appears first according to P. De-
fine a bijection f by first mapping that first item to u and its neighbors in
G, and extending this one-to-one correspondence to other vertices in G in an
arbitrary, consistent manner. In this case, the input item corresponding to u
would appear first according to P in the input to the graph problem. Because
all items are isomorphic, it is always possible to extend the bijection to all of

G.

Now, suppose that two topological structures G = ([n], E') and G? =
([m], E?) consist only of isomorphic items. Using a similar idea, for each pri-
ority function P, each z € QN[0,1/2), each u € [n], and each v € [m], one can
assign names to vertices of G' and G? such that the first input item according
to P is associated with u in G' and the same item is associated with v in
G2. In particular, this means that as long as the two topological structures
are regular, we can always convert them into gadgets satisfying the first item
condition.

Suppose that there is a vertex u in G! that appears in every optimal
solution in G!, i.e., a “reject” decision leads to non-optimality. Furthermore,
suppose that there is a vertex v in G2 that is excluded from every optimal
solution in G2, i.e., an “accept” decision leads to non-optimality. Then for each
x, using the above construction, we can make the first item according to P
be associated with u in G' and with v in G2. This means that we can always
convert the topological structures into gadgets satisfying the distinguishing
decision condition. Finally, observe that the size condition is satisfied with
s = max(|G|,|G?|).

We note a very important special case of the above construction. Suppose
that a single topological structure G that consists solely of isomorphic input
items is such that the optimal solution is unique and non-trivial, i.e., both
“accept” and “reject” decisions must be represented in the optimal solution.
Then we can duplicate G and pick u to be a vertex which is accepted in the
unique solution and v to be a vertex which is rejected in the unique solu-
tion, and apply the above construction. All in all, this reduces the problem
of defining gadgets to finding a small regular graph with a unique, non-trivial
optimal solution. The size of such a graph is then equal to the parameter s in
Theorems 12 and 13 and Corollary 1. One can relax the condition of a unique
solution and require that the topological gadget has an input item u with de-
cision “accept” in every optimal solution, and an input item v with decision
“reject” in every optimal solution.

This gadget construction can clearly be carried out in other input models.
There are very few requirements: we need to have a notion of isomorphism
between input items, and a notion of the topological structure of a gadget.
Once we have those two notions, if we find a topological structure consisting
only of isomorphic items with a unique, non-trivial optimal solution, then we
immediately conclude that the problem requires the trade-off between advice

24 Borodin, Boyar, Larsen, and Pankratov

and approximation ratio as outlined in Theorems 12 and 13 and Corollary 1
with parameter s equal to the size of the topological template.

We finish this section by remarking that one can perform similar reductions
with gadgets where not all input items are isomorphic. Theorem 19, which is
based on a lower bound construction from [7], is proven via a reduction for
Vertex Cover using two gadget pairs with some vertices of degree 2 and others
of degree 3. One simply needs that there is one gadget pair for the case where
a vertex of degree 2 has the highest priority and another gadget pair for the
case where a vertex of degree 3 has highest priority. For both gadget pairs,
s = 7, the optimal value is 3, and the minimum possible objective value for
the gadget in the pair is 4. Thus, the results of Theorem 12 (or Theorem 13 if
it was a maximization problem) and Corollary 1 can be applied. This idea can
be extended to other input models where the gadgets have input items which
are not isomorphic. For simplicity, we do not restate the two theorems or the
corollary for the extension where there are t different classes of isomorphic
input items and thus ¢ pairs of gadgets.

6 Reductions to Classic Optimization Problems

In this section, we provide examples of applications of the general reduction
template. With the exception of bipartite matching, all of these problems are
NP-hard, as a consequence of the NP-completeness of their underlying decision
problems, as established in the seminal papers by Cook [14] and Karp [17].
Furthermore, these problems are known to have various hardness of approxi-
mation bounds.

6.1 Independent Set

First, we consider the maximum independent set problem in the vertex arrival,
vertex adjacency input model. Consider the topological structure of a gadget
in Figure 1. There are 5 vertices on the top and 3 vertices on the bottom. All
top-vertices are connected to all bottom-vertices. Additionally, the 5 vertices
on the top form a cycle (a Cs). In this way, each vertex has degree 5 and
hence all the input items are isomorphic. If we pick any vertex from the top to
be in the independent set, then we forgo all the bottom-vertices, and we are
essentially restricted to picking an independent set from Cj, which has size at
most 2. On the other hand, we could pick all 3 vertices from the bottom to
form an independent set.

Suppose without loss of generality that the highest priority input item is
(1,{4,5,6,7,8}). The optimal decision for the first vertex is unique: For G*,
one should accept, and for G2, reject.

In this case, the maximum number s of input items for a gadget is 8,
OPT(G') = OPT(G?) = 3, and BAD(G') = BAD(G?) = 2. By Corollary 1,
we can conclude the following:

Advice Complexity of Priority Algorithms 25

Fig. 1 Topological structure of the gadgets (G', G2?) for independent set.

Theorem 14 For Mazimum Independent Set and any ¢ € (0, 3], no fived
priority algorithm reading fewer than (1 — H(g))n/16 advice bits can achieve

an approzimation ratio smaller than 1+ = .

Theorem 14 is related to the result in Davis and Impagliazzo [15], showing
a % lower bound for Maximum Independent Set in the adaptive priority model
(without advice). Note that for any € € (0, 1], 2 is larger than the lower bound
in Theorem 14. For fixed priority algorithms, with further assumptions, a much
larger lower bound, ”1—'52, is proven in Borodin at al. [7]. This same bound is
obtained under two different assumptions: The first option is that the priorities
are based only on the degrees of the vertices, and that instead of having the
neighboring vertices in the input items, the names of the incident edges are
given. The second option is that the algorithms does all acceptances before
any rejections, now assuming that neighboring vertices are listed in the input
items and allowing an adaptive priority algorithm.

6.2 Bipartite Matching

Given a bipartite graph G = (U,V, E) where E C U x V, a matching in G
is a collection of vertex disjoint edges. For maximum bipartite matching, we
must find a matching of maximum cardinality. In this section, we consider the
maximum bipartite matching problem in the vertex arrival, vertex adjacency
model. In this model, an input item consists of a vertex name necessarily from
U together with names of neighbors necessarily in V. Thus, the U-side can be
considered to be “online” and the whole graph G is revealed one vertex from
U at a time.

Note that our framework was stated to work for decisions over a binary
alphabet X = {“accept”, “reject”}. Strictly speaking, in bipartite matching,
decisions are stated most naturally over a larger alphabet. For instance, con-
sider an input item (u,{vi,...,vx}), then the decision can be thought of as
being made over an alphabet I' = V U {L}. Here, a decision v stands for
matching u with v, and a decision L stands for not matching u at all. We
can still apply our framework to bipartite matching by surjectively mapping
I" onto X via f as follows: f(v) = “accept”, f(L) = “reject”. In effect, we

26 Borodin, Boyar, Larsen, and Pankratov

convert a priority algorithm with decisions over I" into a priority algorithm
with decisions over Y. Since we are interested in lower bounds, the result for
2’ carries over to I'. Of course, this idea is not specific to bipartite matching,
and similar alphabet transformations can be done for all problems with deci-
sions over non-binary alphabets. It is reasonable to believe that a framework
applicable directly to non-binary alphabets could be used to derive stronger
inapproximation results.

Following the reduction template, two input items are isomorphic if the
corresponding vertices have the same degree. Thus, a gadget consists of iso-
morphic items if it is a bipartite graph that is regular on the U-side, whereas
there are no requirements for the V-side. Consider the topological structure
of the 3 by 3 gadgets in Figure 2, where

Gl = ([3}7 [3]7 El) with El = {(L 1)7 (17 2)a (27 2)7 (2v 3)7 (37 2)3 (373)}
and
G? = ([3],[3], EY) with E? = {(1,1),(1,2),(2,1),(2,3),(3,1),(3,3)}.

All input items are isomorphic — they are vertices of degree 2. Suppose without
loss of generality that the highest priority input item is (1, {1,2}). The optimal
decision for the first vertex is unique: For G' choose the edge (1,1), and for
G? choose (1,2).

O—0 O£
O—0 el
F 0 e

Fig. 2 Topological structure of the gadgets (G, G?) for bipartite matching.

In this case, the (maximum) number s of input items (the number of ver-
tices given) for any of the two gadgets is 3, OPT(G!) = OPT(G?) = 3, and
BAD(G') = BAD(G?) = 2. By Corollary 1, we can conclude the following:

Theorem 15 For Mazimum Bipartite Matching and any e € (0, %], no fixed
priority algorithm reading fewer than (1 — H(g))n/6 advice bits can achieve
an approzimation ratio smaller than 1+ 3=.

Related work for Maximum Bipartite Matching using online algorithms
with advice or priority algorithms has generally used competitive ratios which
are less than 1. Pena and Borodin [26] show an asymptotic inapproximation
bound for adaptive priority algorithms without advice of £, whereas our result
in Theorem 15 cannot be as large as 2 (corresponding to 3); the fixed priority
model is stronger, but we allow advice, and that makes it harder to get a

Advice Complexity of Priority Algorithms 27

strong bound. For online algorithms with advice, Diirr et al. [16] show that
O(n /&%) advice bits are sufficient for achieving a competitive ratio of (1—¢) for
online algorithms, and Mikkelsen [24] shows that linear advice is necessary to
be better than 1 — %—competitive, matching the randomized online algorithm
lower bound of Karp et al. [18]. This lower bound is much larger than the
one in Theorem 15, but these algorithms are online. Pena and Borodin [26]
also show that £2(loglogn) bits of advice are necessary for an online algorithm
to achieve a competitive ratio better than 1/2. Using the randomized upper
bound result of Karp et al. [18] and the result of Béckenhauer et al. [5], showing
how to change randomized upper bounds to advice results, one notes that
O(logn — log(1 + €)) bits of advice are sufficient to improve over 1/2; and
obtain (1 —1)/(1+¢).

6.3 Maximum Cut

Consider the unweighted maximum cut problem in the vertex arrival, vertex
adjacency input model. The goal is to partition vertices into two sets (blocks of
the partition) such that the number of edges crossing the two sets is maximized.
The partition is specified by an algorithm by assigning 0 or 1 to vertices. In
addition, we require that 0 is assigned to vertices belonging to the larger block
of the partition. The gadget from Section 6.1 (see Figure 1) also works for the
maximum cut problem. There is a unique non-trivial maximum cut for that
gadget: the cut induced by partitioning vertices into {1, 2,3} and {4, 5,6, 7, 8}
for G* and into {6,7,8} and {1,2,3,4,5} for G.

Suppose without loss of generality that the highest priority input item is
(1,{4,5,6,7,8}). The optimal decision for the first vertex is unique: For G*,
respond 1, and for G2, respond 0.

In this case, the maximum number s of input items for a gadget is 8,
OPT(G') = OPT(G?) = 15, and BAD(G') = BAD(G?) = 14. By Corollary 1,
we can conclude the following:

Theorem 16 For Mazimum Cut and any € € (0, %}, no fized priority algo-

rithm reading fewer than (1 — H(e))n/16 advice bits can achieve an approzi-

mation ratio smaller than 1 + .

6.4 Maximum Satisfiability

We consider the MAX-SAT problem (and, in fact, MAX-3-SAT) in the follow-
ing input model. An input item (z, ST, S7) consists of a variable name x, a set
ST of clause information tuples for those clauses in which x appears positively,
and a set S~ of clause information tuples for those clauses where the variable
x appears negatively. The clause information tuples for a particular clause
contain the name of the clause, the total number of literals in that clause, and
the names of the other variables in the clause, but no information regarding
whether those other variables are negated or not. This corresponds to Model

28 Borodin, Boyar, Larsen, and Pankratov

21in [25]. A gadget is then a set of input items defining a consistent CNF-SAT
formula. Thus, for every clause information tuple (C, ¢, V) for a variable z with
V ={xi, Ty, ..., 2.}, we have that £ = r 4+ 1 (since the variable itself is in
the clause along with r other literals), and for each x;,, the variable 2 occurs
in an information tuple associated with z;,, along with the same clause name
C and the same length ¢. Two input items are isomorphic if they are the same
up to renaming of the variables. The goal is to satisfy the maximum number
of clauses. Consider the following pair of instances (gadgets):

Gl=CiANCyANC3ANCyNCs ACg ACr ACs,

where

X1 \Y To V 333) X1 \Y X9 \Y —\583)

= (= (
= (1’1 \/_|£L'2\/"E3) C4 = ((El\/xg\/_'.’ﬁg)
= = (

-2 VgV x3) -1 VgV xs)

07 = (_'32‘1 V —xg V —\333) CS = (—\.131 V —xg V _|Z‘3)

There are only 3 variables, each appearing in every clause. In addition,
each variable occurs positively in four clauses and negatively in four others.

When restricting the clauses C; through Cy to just the variables x5 and x3,
the result is all possible clauses over x5 and x3. Therefore, no truth assignment
for x5 and x3 can satisfy all four clauses, unless x; is set to True. To satisfy
Cs through Cg, we can set z2 to True and x3 to False. Thus, every maximum
assignment has x; set to True.

Consider

G?*=CiANCyaANC5NCyANCs ACs ACr ACs,

where

Ci = (mx Vg Vas) = (—x1 V e V x3)
C3 = (mz1 V22V xg) C’4 = (—z1 Va2 V —13)
Cs = (z1 V2 V 23) = (21 V 2y Vxs)
Cr=(x1 V-2V —\xg) Cg = (z1 V ~x9 V —x3)

The universe of inputs for these gadgets consists of all input items of the
form (x, S, S7), where x € {1, 72,23}, and each of ST and S~ contain four
distinct clause information tuples with clause names in the set

{Clv 027 C37 047 057 CGa C77 08}7

lengths equal to 3, and variable sets containing the other two variables not
equal to z. All eight clause names will appear in every input item.

Suppose without loss of generality that the highest priority input among
all of these possibilities is

(.’[1, {(01’37 {:L'Qa (E3}), (C27 3, {1’2,1’3}), (C3a 3, {.%2,.%3})7 (04,37 {:L'Qa (E3})},
{(05’ 3, {$2,5€3}), (Cﬁa 3, {132,:63}), (077 3, {1‘2,1‘3}), (08’ 3, {$27x3})})'

Advice Complexity of Priority Algorithms 29

Note that the optimal decision for x; is unique for each of these gadgets and
is “True” for G and “False” for G?.

In this case, the maximum number s of input items for a gadget is 3,
OPT(G') = OPT(G?) = 8, and BAD(G') = BAD(G?) = 7. By Corollary 1,
we can conclude the following:

Theorem 17 For Maximum 3-Satisfiability and any € € (0, %], no fived pri-
ority algorithm reading fewer than (1 — H(g))n/6 advice bits can achieve an
approximation ratio smaller than 1 + g=.

Note that the gadget pair used in the proof above has repeated clauses.
We believe it is possible to prove a similar result without repeated clauses at
the expense of a more complicated gadget.

Theorem 17 is related to but incomparable with the Poloczek et al. [28]
Maximum Satisfiability inapproximation result for adaptive priority algorithms
(without advice) for the weighted version of the problem with arbitrary num-
bers of literals per clause, where they achieve a 3/4 lower bound (that paper
uses ratios smaller than one). The result in Theorem 17 is less than 4/3, but
advice is allowed.

6.5 A Job Scheduling Problem

In this section, we consider job scheduling on a single machine of unit time jobs
with precedence constraints. In this problem, we are given a set of jobs with
precedence constraints specifying, for example, that if job J; and job Jy are
scheduled, then J; has to precede job J;. The precedence constraints are not
necessarily compatible, i.e., there could be a cyclic set of constraints. We are
interested in scheduling a maximum number of jobs that are compatible. We
can think of the precedence constraints as specifying a directed graph, in which
case it is called the maximum induced directed acyclic subgraph problem. This
problem is the complement of the minimum feedback vertex set problem — one
of Karp’s original NP-complete problems [17]. Inapproximation bounds were
proven by Lund and Yannakakis in [21]. The schedule can be obtained from
such a subgraph by ordering the jobs topologically and scheduling them one
after another in that order. Thus, the input items are of the form (J, S*,57),
where J is the name of a job, ST is the set of jobs such that if they were
scheduled together with J they would have to be scheduled before J, and
S~ is the set of jobs such that if they were scheduled together with J they
would have to be scheduled after .J. Using graph terminology, S* consists of
all incoming neighbors of J and S~ consists of all outgoing neighbors of J. An
input item describes a subgraph consisting of a distinguished vertex together
with all of its predecessors and successors and all edges connecting to or from
the distinguished vertex. Two input items are considered isomorphic if they are
isomorphic as graphs. This implies in particular that they have the same in-
and out-degrees. Figure 3 shows a topological gadget such that every optimal
solution contains Job 0 and excludes Job 8, and it consists only of isomorphic

30 Borodin, Boyar, Larsen, and Pankratov

items (each vertex has in-degree 2, out-degree 2, and 4 different neighbors in
all).

Fig. 3 Topological structure of a gadget for job scheduling of unit time jobs with precedence
constraints.

In this case, the maximum number s of input items for a gadget is 9,
OPT(G') = OPT(G?) = 6 (for instance, schedule jobs 1,0,2,5,4,6), and
BAD(G') = BAD(G?) = 5. By Corollary 1, we can conclude the following:

Theorem 18 For Job Scheduling of Unit Time Jobs with Precedence Con-
straints and any € € (0, %], no fized priority algorithm reading fewer than
(1 — H(e))n/18 adwvice bits can achieve an approzimation ratio smaller than
1+ 5=

6.6 Vertex Cover

Consider the minimum vertex cover problem in the vertex arrival, vertex ad-
jacency input model.

We use the construction from [7] to obtain two pairs of gadgets, one if the
highest priority input item has degree 2 and the other if it has degree 3. For
each input = to Pair Matching, the universe of input items contains names of
seven vertices, and for each of the vertices all possibilities for both degrees two
and three.

First note that both graphs in Fig. 4 have vertex covers of size 3.

However, in order to obtain a vertex cover of size 3, it is necessary to accept
vertex 1 in Graph 1 and reject vertex 2 in Graph 1. Thus, the gadget pair for
vertices of degree 2 consists of two copies of Graph 1, where the highest priority
vertex is vertex 1 in the first gadget and vertex 2 in the second.

Similarly, in order to obtain a vertex cover of size 3, it is necessary to accept
vertex 3 in Graph 1 and reject vertex 1 in Graph 2. Thus, the gadget pair for
vertices of degree 3 consists of Graph 1, where the highest priority vertex is
vertex 3, and Graph 2, where the highest priority vertex is vertex 1.

Advice Complexity of Priority Algorithms 31

O—O—&
Y (&—C

Fig. 4 Graph 1 to the left and Graph 2 to the right.

The highest priority vertex must have one of these two degrees, so the
reduction can continue with the correct gadget pair for that degree.

For either gadget pair, the maximum number s of input items for a gadget is
7, OPT(G') = OPT(G?) = 3, and BAD(G') = BAD(G?) = 4. By Corollary 1,
we can conclude the following:

Theorem 19 For Minimum Vertex Cover and any e € (0, %], no fived pri-
ority algorithm reading fewer than (1 — H(e))n/14 advice bits can achieve an
approximation ratio smaller than 1+ 5.

Below we show a weaker result using a regular graph, so all input items
are isomorphic.

Consider the topological structure of a gadget in Figure 5. It is a 4-regular
graph on 8 vertices. This graph has a unique, non-trivial minimum vertex
cover {2,3,4,6,8} (we have verified by enumeration). Note that this is very
similar to the case for Independent Set, in that an isomorphic copy of the
same graph can be used for the other gadget in the pair. Then, assuming
that (2,{1,3,4,7}) is the first input item, accepting the vertex can lead to
the unique optimum vertex cover in the gadget depicted, and renaming the
vertex to one different from {2, 3,4, 6,8} and rejecting it can lead to the unique
optimum vertex cover in a second gadget.

In this case, the maximum number s of input items for a gadget is 8,
OPT(G') = OPT(G?) = 5, and BAD(G!) = BAD(G?) = 6. By Corollary 1,
we can conclude the following:

Theorem 20 For Minimum Vertex Cover and any € € (0, %], no fized pri-

ority algorithm reading fewer than (1 — H(e))n/16 advice bits can achieve an
approzimation ratio smaller than 1+ £.

The result from [7] showed that no adaptive priority algorithm (without
advice) could obtain a competitive ratio better than 4/3, which is larger than
the above result.

32 Borodin, Boyar, Larsen, and Pankratov

Fig. 5 Topological structure of a gadget for vertex cover.

7 Concluding Remarks

We have developed a general framework for showing linear lower bounds on
the number of advice bits required to get a constant approximation ratio for
fixed priority algorithms with advice. All of the ratios obtained approach 1
as the amount of advice approaches some fraction of n. The results for the
problems studied are summarized in Table 1.

Table 1 Summary of results: For a given problem, and any ¢ € (0, %]7 no fixed priority algo-
rithm reading fewer than the specified number of bits of advice can achieve an approximation
ratio smaller than the ratio listed.

Problem Bits Ratio
Independent Set 1-H(e)n/16 1+ 5=
Maximum Bipartite Matching 1— H(e))n/6 1+ 35

(()

(()
Maximum Cut (1-H(e))n/16 1+ 57—
Minimum Vertex Cover (1-H(e)n/14 1+ %
Maximum 3-Satisfiability (1—-H(e))n/6 1+ g5
Unit Job Scheduling with PC (1 — H(g))n/18 1+ g=

The framework relies on reductions from the Pair Matching problem —
an analogue of the Binary String Guessing problem from the online world,
resistant to universe orderings. Many problems remain open:

— Can the results in this paper be extended to adaptive priority algorithms
with advice? At first glance, it looks possible, since the results presented
only depend on the decision for the first input item of a gadget. However,
in the reductions, in order to know when a possible item 1 — x should have
already appeared if it existed, one sees an input item y which had lower
priority than 1 — x at that time. In the adaptive case, after processing part
of the gadget for the case where 1 — x does not arrive, it may be possible

Advice Complexity of Priority Algorithms 33

that some item other than y now has highest priority. Then, the input item
y should not already have been seen.

Can our framework (or a modification of it) show non-constant inapproxi-
mation results with large advice, for example, for independent set?

In vertex coloring, any decision for the first item can be completed to an
optimal solution. Can our framework be modified to handle such problems?
For example, see the argument for the makespan problem in [29].

An interesting goal is to study the “structural complexity” of online and
priority algorithms. Can one define analogues of classes such as NP, NP-
Complete, #P, etc. for online/priority problems? If so, are complete prob-
lems for these classes natural?

Acknowledgements Part of the work was done when the first author was visiting Toyota
Technological Institute at Chicago. The work was initiated while the second and third au-
thors were visiting the University of Toronto. Most of the work was done when the fourth
author was a postdoc at the University of Toronto.

References

10.

11.

12.

13.

14.

Alekhnovich, M., Borodin, A., Buresh-Oppenheim, J., Impagliazzo, R., Magen, A.,
Pitassi, T.: Toward a model for backtracking and dynamic programming. Computa-
tional Complexity 20(4), 679740 (2011)

Angelopoulos, S., Borodin, A.: On the power of priority algorithms for facility location
and set cover. Algorithmica 40(4), 271-291 (2004)

. Besser, B., Poloczek, M.: Greedy matching: Guarantees and limitations. Algorithmica

77(1), 201-234 (2017)

. Bockenhauer, H.J., Hromkovi¢, J., Komm, D., Krug, S., Smula, J., Sprock, A.: The

string guessing problem as a method to prove lower bounds on the advice complexity.
Theoretical Computer Science 554, 95-108 (2014)

Bockenhauer, H.J., Komm, D., Krilovi¢, R., Kralovi¢, R.: On the advice complexity of
the k-server problem. In: 38th International Colloquium on Automata, Languages and
Programming (ICALP), Lecture Notes in Computer Science, vol. 6755, pp. 207-218.
Springer (2011)

Bockenhauer, H.J., Komm, D., Kralovi¢, R., Krélovi¢, R., Momke, T.: Online algorithms
with advice: The tape model. Information and Computation 254(1), 59-83 (2017)
Borodin, A., Boyar, J., Larsen, K.S., Mirmohammadi, N.: Priority algorithms for graph
optimization problems. Theoretical Computer Science 411(1), 239-258 (2010)
Borodin, A., Boyar, J., Larsen, K.S., Pankratov, D.: Advice complexity of priority al-
gorithms. In: 16th International Workshop on Approximation and Online Algorithms
(WAOA), Lecture Notes in Computer Science, vol. 11312, pp. 69-86. Springer (2018)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge
University Press (1998)

Borodin, A., Lucier, B.: On the limitations of greedy mechanism design for truthful
combinatorial auctions. ACM Transactions on Economics and Computation 5(1), 2:1—
2:23 (2016)

Borodin, A., Nielsen, M.N., Rackoff, C.: (Incremental) priority algorithms. Algorithmica
37(4), 295-326 (2003)

Boyar, J., Favrholdt, L.M., Kudahl, C., Larsen, K.S., Mikkelsen, J.W.: Online Algo-
rithms with Advice: A Survey. ACM Computing Surveys 50(2), 19:1-19:34 (2017)
Boyar, J., Kamali, S., Larsen, K.S., Lépez-Ortiz, A.: Online bin packing with advice.
Algorithmica 74(1), 507-527 (2016)

Cook, S.A.: The complexity of theorem-proving procedures. In: 3rd Annual ACM Sym-
posium on Theory of Computing (STOC), pp. 151-158. ACM (1971)

34

Borodin, Boyar, Larsen, and Pankratov

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Davis, S., Impagliazzo, R.: Models of greedy algorithms for graph problems. Algorith-
mica 54(3), 269-317 (2009)

Diirr, C., Konrad, C., Renault, M.P.: On the power of advice and randomization
for online bipartite matching. In: 24th Annual European Symposium on Algorithms
(ESA), LIPIcs, vol. 57, pp. 37:1-37:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2016)

Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer
Computations, The IBM Research Symposia Series, pp. 85-103 (1972)

Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipartite
matching. In: 22nd Annual ACM Symposium on Theory of Computing (STOC), pp.
352-358. ACM (1990)

Komm, D.: An Introduction to Online Computation — Determinism, Randomization,
Advice. Texts in Theoretical Computer Science. An EATCS Series. Springer (2016)
Lesh, N., Mitzenmacher, M.: Bubblesearch: A simple heuristic for improving priority-
based greedy algorithms. Information Processing Letters 97(4), 161-169 (2006)

Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems. In:
20th International Colloquium on Automata, Languages and Programming (ICALP),
LNCS, vol. 700, pp. 40-51. Springer (1993)

Mathematics StackExchange: Is the set of real numbers the largest possible totally or-
dered set? URL: https://math.stackexchange.com/questions/255145/is-the-set-of-real-
numbers-the-largest-possible-totally-ordered-set. Accessed: 2019-07-31

McGregor, A.: Graph stream algorithms: a survey. ACM SIGMOD Record 43(1), 9-20
(2014)

Mikkelsen, J.W.: Randomization can be as helpful as a glimpse of the future in online
computation. In: 43rd International Colloquium on Automata, Languages and Program-
ming (ICALP), LIPIcs, vol. 55, pp. 39:1-39:14. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2016). The details can be found in arXiv:1511.05886 [cs.DS].

Pena, N., Borodin, A.: On the limitations of deterministic de-randomizations for online
bipartite matching and max-sat. ArXiv (2016). ArXiv:1608.03182 [cs.DS]

Pena, N., Borodin, A.: On extensions of the deterministic online model for bipartite
matching and max-sat. Theoretical Computer Science 770, 1-24 (2019)

Poloczek, M.: Bounds on greedy algorithms for MAX SAT. In: 19th Annual European
Symposium on Algorithms (ESA), LNCS, vol. 6942, pp. 37-48. Springer (2011)
Poloczek, M., Schnitger, G., Williamson, D.P., van Zuylen, A.: Greedy algorithms for
the maximum satisfiability problem: Simple algorithms and inapproximability bounds.
SIAM Journal on Computing 46(3), 1029-1061 (2017)

Regev, O.: Priority algorithms for makespan minimization in the subset model. Infor-
mation Processing Letters 84(3), 153-157 (2002)

