The Maximum Resource Bin Packing Problem

Joan Boyat Leah Epsteitr Lene M. Favrholdt Jens S. Kohrt
Kim S. Larsen' Morten M. Pederseh Sanne WghlK

! Department of Mathematics and Computer Science
University of Southern Denmark, Odense, Denmark
{j oan, | enem sval | e, ksl ar sen, nort enm;@ nmada. sdu. dk

2 Department of Mathematics
University of Haifa, 31905 Haifa, Israel
| ea@mat h. hai fa. ac.il

3 Department of Accounting, Finance, and Logistics
Aarhus School of Business, Aarhus, Denmark
sanw@sb. dk

Abstract

Usually, for bin packing problems, we try to minimize the number of bins used threin
case of the dual bin packing problem, maximize the number or total size gbtadciems.
This paper presents results for the opposite problems, where we would likeximize the
number of bins used or minimize the number or total size of accepted items. WEleon
off-line and on-line variants of the problems.

For the off-line variant, we require that there be an ordering of the bm#hat no item in
a later bin fits in an earlier bin. We find the approximation ratios of two natugaicajmation
algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximsauree variant of
classical bin packing.

For the on-line variant, we define maximum resource variants of classidatiaal bin
packing. For dual bin packing, no on-line algorithm is competitive. Forsatasbin packing,
we find the competitive ratio of various natural algorithms.

We study the general versions of the problems as well as the parametaizeahs where
there is an upper bound %fon the item sizes, for some integer

*The work of Boyar, Favrholdt, Kohrt, and Larsen was suppmbittepart by the Danish Natural Science Research
Council (SNF). The work of Epstein was supported in part ke I8rael Science Foundation (ISF). A preliminary
version of this paper appeared in thifteenth International Symposium on Fundamentals of Gaatjpn Theory
volume 3623 of Lecture Notes in Computer Science, pages4®B/-Springer-Verlag, 2005.

1

1 Introduction

Many optimization problems involve some resource, anddkk for algorithm designers is typi-
cally to get the job done using the minimum amount of resairBelow, we give some examples.

Bin packing is the problem of packing items of sizes betweea aad one in the smallest possible
number of bins of unit size. Here, the bins are the resouides traveling salesperson problem is
the problem of finding a tour which visits each vertex in a viségl graph while minimizing the
total weight of visited edges. Here the weight is the resmuBcheduling jobs on a fixed number
of machines is the problem of minimizing the completion tiofehe last job. Here time is the
resource.

Each of these problems comes in many variations and them@amg more entirely different op-
timization problems. Since these problems are computtiohard assuming that 2 NP, the
optimal solution can usually not be computed in reasonabile for large instances, so polyno-
mial time approximation algorithms are devised. For manhe$e problems, there are interesting
variants where the entire instance is not known when the atetipn must commence. The area
of on-line algorithms deals with this problem scenatrio.

For detailed descriptions of many of these problems and sloditions in terms of approximation
or on-line algorithms, see [4, 10, 13], for instance.

For all of these problems, minimizing the resources usenhsee be the obvious goal. However,
if the resource is not owned by the problem solver, but is aMog another party who profits
from selling the resource, there is no longer agreementtahewbjective, since the owner of the
resource wants to maximize the resources used, presumatdy some constraints which could be
outlined in a contract. Thus, many of the classical problamesinteresting also when considered
from the reverse perspective of trying to maximize the amofiresources that are used.

In [1], the Lazy Bureaucrat Scheduling Problem is considereate, tasks must be scheduled and
processed by an office worker. The authors consider varionst@ints and objective functions.
The flavor of the constraints is that the office worker canitadie if there is work that can be done,
and the office worker’s objective is to schedule tasks urttkse constraints so as to minimize the
work carried out; either total work, arranging to leave waskearly as possible, or a similar goal.
Though it is presented as a toy problem, it is an importarnwia some optimization problems,
and many other problems are interesting in this perspegrnexided that the constraints imposed
on the problem are natural.

Also other problems have been investigated in this reveesspgctive, e.g., longest path [16],
maximum traveling salesperson problem [12] and lazy onhterval coloring [9].

Maximum Resour ce Bin Packing

In this paper, we consider bin packing from the maximum resoperspective. We consider it

as an approximation problem, but we also investigate twbrenvariants of the problem. To our
knowledge, this is the first time the reverse perspective fodlem has been considered in an

2

on-line setting. Note that the complexity status of theliofé problems studied in this paper is
open.

The abstract problem of packing items of a given size int® lhias numerous concrete applica-
tions, and for many of these, when the resource must be medhthe reverse problem becomes
interesting for one of the parties involved. We use the iy concrete problem for motivation.

Assume that we hire a company to move some items by truck frogrsie, the origin, to another,

the destination. Say that the price we must pay is propatitnthe number of trucks used. Some
companies may try to maximize the number of trucks usedansdétrying to get the items packed
in few trucks. To prevent the company from cheating us, tHeving constraint has been placed
on the packing procedure:

Constraint 1: When a truck leaves the origin, none of the unpacked itemsinemgeat the origin
should fit into that truck.

In the off-line variantOff-Line Maximum Resource Bin Packjwge are given an unlimited number
of unit sized bins and a sequence of items with size®in], and the goal is to maximize the
number of bins used to pack all the items subject to Constfair& set of items fits in a bin if
the sum of the sizes of the items is at most one. In the offyar@nt, there must be an ordering
of the bins such that no item in a later bin fits in an earlier. lixplained using the motivating
example, Constraint 1 can be illustrated as follows: Truckisenat the origin one at a time. A
truck is loaded, and may leave for its destination when ndrlesoremaining items can fit into the
truck. At this time, the next truck may arrive.

On-Line Maximum Resource Bin Packisgimilar to the off-line version. However, the problem is
on-line, meaning that items are revealed one at a time, asfditsan must be processed before the
next item becomes available. Because of the on-line natuheqfroblem, instead of Constraint 1,

the following modified constraint is used:

Constraint 2: The company is not allowed to begin using a new truck if theemuritem fits in a
truck already being used.

Thus, the on-line algorithm is allowed to open a new bin evieng the next item to be processed

does not fit in any of the previous bins. The objective is giilise as many bins as possible. Thus,
all partly loaded trucks are available all the time, and véwen an item does not fit, a new truck

may pull up to join the others.

We also consider another on-line probledn-Line Dual Maximum Resource Bin Packirtdere,

the number of available bins is fixed. For each item, an algarihas to accept it and place it in
one of its bins, if it is possible to do so. Thus, here a fixed benof trucks have been ordered. In
this case, neither Constraint 1 nor Constraint 2 is used; tjgele is not to maximize the number
of trucks used, since this number is fixed. There are two plessebjective functions: the number
of accepted items or the total size of the accepted itemsotimdases, the objective is to minimize
this value. Thus, the truck company wants to pack as few itenas little total size as possible

3

into the trucks, minimizing the fuel needed for each truakinaybe hoping to get a new order of
trucks for the items which do not fit into the fixed number ottks which have been ordered.

For all three problems, we study the general version as wetha parameterized version where
there is an upper bound gfon the item sizes, for some integer

A closely related problem is the Bin Covering Problem. In thislgpem, the algorithm is given a
sequence of items and has to place them in bins, while trgimgatximize the number of bins that
contain items with a total size of at least one. This is quitelar to Off-Line Maximum Resource
Bin Packing with bins twice as large and Constraint 1 replagettié following weaker constraint:

Constraint 3: No pair of trucks leaving the origin may have a total load efris that could have
been packed in one truck.

The problem is NP-complete but has an asymptotic fully potgral time approximation scheme
(AFPTAS) [14]. Further results on that problem can be founf2j 7, 8].

Our Reaults

For Off-Line Maximum Resource Bin Packing, we show that no algm has an approximation
ratio of more than;;. For the parameterized version, the upper bound-is; for & > 2. The
algorithm First-Fit-Decreasing is worst possible in thessethat it meets this upper bound. First-
Fit-Increasing is better; it has a competitive ratiogoand a parameterized competitive ratio of

1 + 4% for k > 2. See Section 2 for a definition of the algorithms.

For On-Line Maximum Resource Bin Packing, we prove a generaidound 01% on the param-
eterized competitive ratio for < 3 and1 + ﬁ for k£ > 3. We prove a general upper bound of 2
for k < 2andl + k—il for k > 2. Hence, fork > 3, all algorithms have the same parameterized
competitive ratio. We prove that First-Fit, Best-Fit, andt-&it all meet the general upper bound.

For On-Line Maximum Resource Dual Bin Packing, we prove th#tefobjective function is the

total numberof items packed, no deterministic algorithm is competijtithes also holds for any

value ofk for the parameterized problem. If the objective functiothis totalsizeof the packed

items, no algorithm for the general problem is competiti¥@r the parameterized version, we
1

prove general lower and upper boundd of D andl + 15, respectively.

The proof of Theorem 3, below, showing that for Off-Line Maxim Resource Bin Packing,
the approximation ratio of First-Fit-Increasinggs uses a new variant of the standard weighting
argument. That result also gives a connection between @#-Maximum Resource Bin Packing
and the relative worst order ratio for on-line algorithmstfte classical bin packing problem. The
relative worst order ratio [5] is a new measure for the qualiton-line algorithms. Theorem 3
has been used to prove the upper bound on a result comparstg-Kito Harmonick) using the
relative worst order ratio [6]. Perhaps other “reverse’gbemns will have similar connections to
the relative worst order ratio.

2 Notation and Algorithms

The input is a sequence of itemis= (s1, s, . .., S,). FOr convenience, we identify an item with
its size and require that item) has size) < s; < 1 (or0 < s; < % for some integek, for the
parameterized problem). The items have to be placed in bisig@one.

For any input sequenck let ALG(I) be both the packing produced when runnilgG on this
input sequence and the number of bins used for this packmgarticular, leOPT be an algorithm
which produces an optimal packing and thus uses as many $pesaible subject to Constraint 1.
Let OPT(I) be both this packing and the number of bins used.

Let SMALL(/) be a packing using the minimum number of bins that the iteros ff can be
packed in without putting items with sizes totaling morertloae in any bin, and [ESMALLbe an
algorithm that creates this packing. Note tBMALLis an optimal algorithm from the classical
bin packing problem, but for Maximum Resource Bin Packings & worst possible algorithm.

An approximation algorithnALG is a c-approximation algorithme > 1, if there is a constarit
such that for all possible input sequende®©PT(/) < ¢ ALG(I) + b. The infimum of all such

c is called theapproximation ratioof the algorithm,Ra.c. For the parameterized problem, we
consider theparameterized approximation rati® A (%), which is the approximation ratio in the
case where all items have size at m%)%r some integek.

An important algorithm in this context is First-FiEF), which places an item in the first bin in
which it fits.

In this paper, we investigate two well known off-line variswof FF in detail:

¢ First-Fit-Increasing(FFI) handles items in non-decreasing order with respect to siess,
placing them using First-Fit.

e First-Fit-Decreasing(FFD) handles items in non-increasing order with respect to giees,
also placing them using First-Fit.

In the on-line variants of the problem, the algorithms reeéhe input, i.e., the items, one at a time
and have to decide where to pack the item before the next ifemy() is revealed.

Similarly to the approximation ratio for approximation aighms, the performance of determin-
istic on-line algorithms is measured in comparison with @pémal off-line algorithmOPT [11,
17, 18]. An on-line algorithmALG is c-competitive ¢ > 1, if there is a constant such that for
all possible input sequencésOPT(I) < ¢ ALG(I) + b. The infimum of all suche is called the
competitive ratioof the algorithm{, . For the parameterized problem, we considempgheame-
terized competitive ratiacCa (%), which is the competitive ratio in the case where all itemgeha
size at mos% for some integek.

For the on-line variants, we consider the following natwigjorithms, all of which, except for
Last-Fit, have been well studied in other contexts:

e First-Fit (FF) as defined previously.

e Last-Fit (LF) is the opposite oFF, i.e., it places a new item in the last opened bin in which
it fits.

e Best-Fit(BF) places the item in a feasible bin which is as full as possitde a feasible bin
with least free space.

o Worst-Fit (WF) is the opposite oBF, i.e., it places an item in a feasible bin with most free
space.

3 Off-Line Maximum Resour ce Bin Packing

For Off-Line Maximum Resource Bin Packing, the goal is to mazerthe number of bins used,
subject to Constraint 1, so there must be an ordering of treehioh that no item placed in a later
bin fits in an earlier bin. We show that no algorithm for thelpeon has an approximation ratio
worse thanif. Then, we use the proof that for classical Bin Packing, Fiit$- approximation
ratio is 1 [15] to prove thaFFD has this worst possible approximation ratio. After that vevs
thatFFI has a better ratio df.

The first two theorems show a relation between the classicatmzation problem for bin packing
and this maximization problem. When considering a worstiptsslgorithm for Off-Line Max-
imum Resource Bin Packing, one considers the algori®RALL the optimal algorithm for the
minimization problem.

Theorem 1 (General upper boundyor the Off-Line Maximum Resource Bin Packing Problem,
any algorithm ALG has a parameterized approximation rafio o

Rac(k) <
I+ k>2

Proof. Consider any multiset of requesfs, The minimum number of bingy, ALG could use on
I is no less than the number of bins usedIMALL

ConsiderOPT's packing of/, and create an ordered liBtcontaining the items id, starting with
the itemsOPT packed in the first bin, followed by those in the second bia,, entil all items have
been included.

By the restrictions on what an algorithm may do, First-Fitksathe items in/’ exactly asOPT
packed the items of. By [15], the number of binsy, used by First-Fit is at mosli%m + 2, if
k =1,and at mostl + +)m + 2, if k > 2. Thus,OPT uses at mosfim + 2 bins, ifk = 1, and at
most(1 + 1)m + 2 bins, ifk > 2, giving the stated ratio. O

Note that the packing b MALLis the optimal result from the point of view of a client of tmadk
company. Thus, Theorem 1 implies that if a client checks @atstraint 1 is obeyed, it will pay

6

no more than abodut 7 times what it would pay if the truck company was serving thentls best
interests. This gives a bound on how bad such a contract ciiorbehe client’s point of view.

We now show that Theorem 1 is tight: First-Fit-Decreasing s approximation ratio.

Theorem 2. For the Off-Line Maximum Resource Bin Packing Problem, themeterized ap-
proximation ratio of FFD is

Rero (k) = 1
1+, k22

Proof. The upper bounds follow from the previous theorem. To prineeldwer bounds, we use
the sequences and proofs from [15]. We observeRR#& produces essentially the same packing
asSMALL(OPT in the proofs in [15]). The packings produced®Bly in [15] satisfy Constraint 1,
so the results in [15] show that for every positive inteffethere exist sequences whéfED uses

at mostlOK + 1 bins whileOPT usesl 7K bins. For the parameterized probldakD usesk bins
andOPT uses at leask” + % bins. The result follows. O

We now turn to the better algorithriaFI.

Theorem 3. The parameterized approximation ratio of FFI is

Reri(k) =

We prove the lower bound first.
Lemma4. The parameterized approximation ratio of FFI is

6

— k<3
5’ -
2+ k
kE2+1° -

Rer (k) >

Proof. Fork < 2 we use the following inputz items of size% andn items of size%, wheren is a
large integer divisible by 6. The optimal packing is to puéatem of size% and one item of size
% in each bin. This make®PT usen bins, each with a fraction oé‘ empty space. On the other
hand,FFI packs% bins, each containing three elements of ﬁzmllowed by 5 bins, each with
two items of siz%. Hence, in totalFFI uses%" bins, and the ratio follows.

For k = 3 (andk = 2) the fraction izi’f equalsg, SO we can prove this case with the> 4

case. Fok > 3 we use a slightly more complicated sequence.rLbe a large integer. The input
contains

e n(k* — 1) items of size- and

e n(k+ 1) items of size;.

FFI usesn(k — 1) bins for the smaller items and(k + 1)/k bins for the larger ones, which is
n(k* + 1)/k in total. All the bins are completely full. An optimal packinvould be to combine
one larger item withk — 1 smaller ones, using(k + 1) bins. Each bin is thus full by a fraction of

% + ﬁ—;} > kiﬂ which makes the packing valid. The approximation ratiotios sequence is thus

2
exactly j+%. O

Note that in this casd;FI’s packing is actually the same as the packing mad8MALL This is
not always the case, though.

Lemma5. The parameterized approximation ratio of FFl is

o e

Ren (k) < K24k
= k=2
k2 +1

Proof. We first prove the caske < 3 which is slightly different from the other cases and has to be
treated separately. For this part of the proof, we do notrassan upper bound on the item sizes.

We assign weights to items in the following way. For all iteimshe interval(0, é] (small items),
the weight is defined to be equal to the size. An item whichrgddo an interval-—-, 1] for some

i+17 ¢
i=1,2,3,4,5 (large items), is assigned the We@ht

The intuition for this weighting comes from considering a m the packing made bifFI that
contains only items from a single intervigh, 1], i € {1,2,3,4,5}. This bin contains at most
items, and therefore each item in such a bin can be thouglsst«:rbratributing% to the total size of

items plus empty space FFI’s packing.

Let I be the total weight of the items in a given input sequence. eegthatFFl +5 > W >
2(OPT — 5), which implies the upper bound.

Consider first the optimal solutio@PT. We show that the total weight of items is at le&lgt>
2(OPT — 5). To show that, we claim that all bins DPT, except for at most five bins, have items
of weight at Ieasg. First, consider the bins containing at least one small.iteoe to Constraint 1,
there is at most one such bin whose total sum of item sizess';smang. Note that the weight of an
item is at least its size. A bin which contains items of toiza¢ ©f at Ieas% has weight at least that
amount. A bin which contains an item larger tt‘@has weight at leadt. Therefore, we only need
to consider bins containing only items@@, %]. We define a pattern to be a multiset of numbers in
3.3, 1, + Whose sum is at most The type of a pattern is the inverse of the smallest numbier in
A patternP of typej is a maximal pattern if adding another instance}mb P, would not result
in a pattern, i.eP U {%} is not a pattern. The pattern of a bin is the multiset of thegivsi of its
items.

For eachj = 2,3,4,5, the packing has at most one bin whose pattern is of fypat is not
maximal. We show that a bin of any maximal pattern has Weiglﬁaaat5 1. The only maximal
pattern of type2 is {3, 3}. The maximal patterns of typeare{s, 3, 5} and{2, 5}. Consider a
maximal pattern of typed. We need to show that the sum of elements in the pattern isast le
g. Let a,b,c be the amounts of, , and 1 in the pattern. If the sum is less than we have

2 < g4 L4 ¢ < 2 This gives9 < 60 + 4b + 3¢ < 10. Sincea,b,c are integers, this is

impossible. Similarly, consider a maximal pattern of tgpéeta, b, ¢, d be the amounts af, 3, 1,
and in the pattern. If the sum is less thanwe have: < ¢+ % 4 ¢+ 4 < 3 This gives
48 < 30a+ 200+ 15¢+ 12d < 50 or 30a + 20b + 15¢ + 12d = 49. Sincea, b, ¢, d are non-negative

integers, this combination is impossible.

Consider now the packing &fI. We show that the total weight of items is at mést< FFI + 5.
Note that the algorithm actually acts as Next Fit Increasind never assigns an item to an old bin
once a new bin is opened. A bin BFI is called a transition bin if it has both at least one small
item and at least one other item, or it has only large itemisif lsontains items of distinct weights.
The last case means that the algorithm is done packing aibite Weight% for some5 > j > 2

and has started packing items of weighff. Therefore, there are at most five transition bins. In
any other bin, the sum of the weights of the items is at most thie is clear if there are only
small items whose weights are equal to their sizes. For dtbs, there arg items of Weight%

in a bin containing only such items. For the transition bihg, total weight of items whose size
is at most one can be at mastso for each of these five bins there is excess weight gfving

W < FFI + 5. HenceOPT < gFFI + 11,

We now prove the lemma fdr > 4. We slightly revise the definitions. Items are small if theg a
in the interval(0, k+3] The weight of a small item is its size. An item which belongam interval

(H—l, 1] for somei = k, k + 1,k + 2, is assigned the weight

Consider the optimal solutio®PT. We show that the total weight of items is at le&Bt >

(k* + 1)(OPT — 4)/(k* + k). To show that, we claim that all bins except for at most founsbi
have items of weight at leagt?® + 1)/(k* + k). First, consider the bins containing at least one
small item. Due to Constraint 1, there is at most one such bse/kotal sum of items is less than

1 — L = B2 > B (which holds for allk > 3).

Note that the weight of an item is at least its size. A bin whiohtains items of total size at least
’gii}g has weight at least that amount. We need to consider bingioamg only items in(=5, 1.
We define a pattern to be a multiset of numberﬁlig, Tk L whose sum is at most Again, we

define the type of a pattern as the inverse of the smallestirtéim

For eachy = k., k + 1, k + 2, the packing has at most one bin whose pattern is of jypa is not
maximal. We show that a bin of any maximal pattern has WeiQFHaStk2+1. The only maximal

k2+k
pattern of typek is {1, ..., 7}

Consider a maximal pattern of typer+ 1. We need to show that the sum of elements in the pattern

is at Ieast’,j,zi,i Let « andb be the amounts o% and — H in the pattern. If the sum is less than

1

1The paper [3] showed a similar result on patterns for a d@ifiepurpose.

Bl we havet;s < ¢ + b < E=£L This givesk? < (k + 1)a + kb < k? + 1. Sincea andb
are integers, this is impossible. Similarly, consider a imax pattern of type: + 2. Leta, b, and

¢ be the amounts of, =+, and 5 in the pattern. If the sum is less th%ﬁ*—l, we havejt) <

St < ’giii This givest(k+1)? < (k+2)(k+1)a+k(k+2)b+k(k+1)c < (K*+1)(k+2)
ora(k*+3k+2)+b(k*+2k)+c(k* + k) = k(k+1)>+ 1. We need to exclude the existence of an
integer solution for, b, andc. Assume that such a solution exists. Note thab+c¢ < k+2, since
otherwise the left hand side is at least+1)(k+2) > k(k+1)*+1. Also note that+b+c > k—1,
since otherwise the left hand side is at mdst 1) (k+2)(k—1) < k(k+1)*+1. If a+b+c = k+1

we get(a+b+c)(k*+k)+2a(k+1)+kb = k(k+1)*+1. Simplifying, we havea(k+1)+kb = 1,
which is clearly impossible. i +b+c = k, we need thaka(k + 1) + kb = k*+ k + 1. Rewriting,

2a — 1 = k(k+1—0b— 2a), s02a — 1 must be divisible by:. Clearly,a cannot be zero. Since
0 < a < k anda is an integer, the only value it can have’iﬁ, but this givesh = —1 which is

impossible.

Now consider the packing &fFl. The total weight of items is at mo8t < FFI + 4 since there
can be only four transition bins. This implies the upper lmban the approximation ratio. [

4 On-Line Maximum Resource Bin Packing

For On-Line Maximum Resource Bin Packjrige goal is to maximize the number of bins used
subject to Constraint 2, so the algorithm is only allowed terop new bin if the current item does
not fit in any open bin. Note that the optimal algorithm mustqass the requests in the same order,
obeying Constraint 2, even though it “knows” the entire segedn advance. We have matching
lower and upper bounds for most algorithms, and we conjec¢hat the algorithm Worst-Fitv{F)

has an optimal competitive ratio éf

Theorem 6 (General upper boundfor the On-Line Maximum Resource Bin Packing Problem,
any algorithm ALG has a parameterized competitive ratio of

2, k=1
Cag(k) <
— k>2.
kE—1
Proof. Fork = 1, this is proven using the fact that for any algorithm, alldyiexcept possibly one,
are at least half full. Fok > 2, we use the fact that all bins, except possibly one, aredudt teast

k—1
k- O]

Fork > 3, Theorem 6 is tight for deterministic algorithms:

Theorem 7 (General lower bound)Any deterministic on-line algorithm ALG has a parameteatize
competitive ratio of

Caic(k) >

The theorem follows from Lemmas 8 and 9 handling the case= andk > 3 respectively.

Lemma 8. There exists a family of sequendgswith items no larger thag such that OPTZ,,) —
oo for n — oo and, for any deterministic on-line algorithm ALG,
OPTI,) > gALG(In).

Proof. The sequence is given in phases. Each phase begingviths, ¢), wheres < -. For
this sequence, there are two possible packings:

5 € €

or
1 1 1 1
2 2 2 2

If the on-line algorithm chooses the first packing, the segaeontinues witk2e, % —€, % —3e),
filling up the two on-line bins. An optimal off-line algorith chooses the second packing, places
the 2¢-item in the second bin, and opens a new bin for the last twosteThus OPT uses three
bins, and has all bins filled to at leaistt 2¢.

If the on-line algorithm chooses the second packing, thaesete continues wittg, % —4e, €, e).

In this case, an optimal off-line algorithm chooses the fiestking, and thus opens a new bin for
the first two of the last four items. The last two items are @thin the first two bins. AgairQPT
uses three bins and has all bins filled to at I%as;th.

Since each on-line bin is filled completely and each off-lieis filled to at Ieas% + 2¢, this can
be repeated arbitrarily many times, with the result tiaG uses two bins per phase a@&T uses
three bins per phase. O

Lemma9. For k > 3, there exists a family of sequendgswith items no larger tharj; such that
OPT(I,) — oo for n — oo and, for any deterministic on-line algorithm ALG,
OPT(L,) > — ALG(I,) — —
YT k-1 Yok -1
Proof. The sequence consists of an initial subsequence followed plilases. Leb < ¢ <
m be a very small constant. The sequence is constructed insswely that after the initial

subsequence, and also after every ph&@seT has the first bin filled td“;—1 + 2ke and all other
open bins filled to exactlﬁ—1 + 2¢e. The on-line algorithm has all open bins fully occupied,aptc
the first bin that is always filled to at Iee@—1 + 2ke.

The sequence starts Wi(hlc —1) x %, 2k:5>. After this, any algorithm has a single open bin (here-
after denoted the first bin) which is full up ﬁq—l + 2ke. The purpose of this initial subsequence is

11

to let the on-line algorithm have a bin where it puts one oreritams of total size of up téke in
each phase.

The rest of the sequence is givenrirphases. Each phase starts M(h —1) x %@) repeated
k — 1 times. No algorithm can open more thanr- 1 bins for thesé:(k — 1) items. Actually, any
algorithm uses exactly — 1 bins for the sequence, since the total size of%tﬁlxems is larger than
k— 2.

We consider two cases, according to how the on-line alguoritistributes the first items of the
current phase.

e Case A: ALG assigns exactly the amo(%@-]t + ¢ to each new binln this caseALG assigns
the items exactly as Worst-Fit would do, for example, thekpagfor & = 4 looks as follows.

O(kE) £ £ £
1 1 1 1
4 4 4 4
1 1 1 1
4 4 4 4
1 1 1 1
4 4 4 4

Note thatALG has placed some number@©fke)-items in the first bin. All bins between the
first bin and the newit — 1 bins are completely full.

In this case, we add(k — 3) x ¢, 2¢) to the phase. Since there are okly- 2 additional
items, at least one bin opened AiG in the current phase is full exactly up@gl +e.0OPT

places the items such that all of its bins are filled to exa@l%ﬁr 2e except for the first bin
which is filled to% + 2ke.

Next, we order the bins used BALG in this phase (nhot including the first bin if it was used)
in order of how much space they have left in non-increasimgiorLets;, 1 < i < k — 1

be the space left in bin of this phase by this ordering. The};n— ke < s; < % — ¢ for

1 <s; < k— 1. Thefirst bin has at mo%t— 2ke space left. All remaining bins AALG are
completely full. We now ad& — 1 items with sizegsq, so, . .., s,_1) to the phase. These
will fit exactly in the k£ — 1 bins. After this all the bins oALG, except for the first bin, are

completely full.

After the k — 2 additional items, all oOPT's bins have at mosg — 2¢ space left. Conse-
guently using the first item of sizkb— g, OPT can open a new bin and it places this and all
the subsequent items in this bin.

The last item of this phase consists of one item of §iZe-+ 2= — S ls,. This is between

(k + 1)e and2ke. ALG has to place this in the first bin, wherg@BT can place it in its new
bin such that all oOPT's bins except the first are exa(:ﬂg—1 + 2¢ full.

12

e Case B: After the first part of the phase, ALG does not H%\}E‘F ¢ in each new bin.In
this case OPT has exactly*-* + ¢ in each new bin. No matter hoALG distributes the
items, it hask — 1 new bins, one of which is filled to at mo‘é%l. Similar to Case A, we
order the bins according to the space they have lef; It % then some of thé — 1 new
bins must be completely full, and we first give some itemsz)é%iuntil s1 < % before we
proceed as in case A. Otherwise we simply do as in Case A, givind items with sizes
(s1,82,...,5k-1). In either case the first item has si?eand in general the size of items in
this subphase is between— (k — 1)e and ;. After thesek — 1 items allk: — 1 new bins of
ALG are completely full.

SinceOPT opens a new bin for the item of sizeit can place all the items arriving afterwards
in the same bin after which the bin is betwﬁef\ — (k — 1)e and® 2 full. The final items

of this phase aré — 1 items of size:, and one item of sizd—@;—1 + 2e minus the space used
in OPTs new bin. The firsk — 1 bins of OPT opened in this phase receive an item of size
to achieve a total 04‘;—1 + 2¢, and the last one receives the larger item for the same pewrpos
These items are placed in the first binAlG (since all its other bins are full).

Note, that in either case we place one or more items of a t@@ala$ at mostike in ALG's first

bin. Sinces < ;515 the space needed in the first birkig + 4k(n + 1)e < 1.

We getALG(I,,) = (k—1)n+1 whereaOPT(I,) = kn-+1. Hence ALG(I,,) = ©1-OPT(I,,)+ 1,

or OPT(I,,) = 2 - ALG(I,) — 5. O

By Theorems 6 and 7, any on-line algorithm has the same cotwpettio fork > 3, i.e., the only
possible gap is fok < 2. For this case, we consider the algorithms First-Fit, BasttRast-Fit,

and Worst-Fit.

Theorem 10. For the On-Line Maximum Resource Bin Packing Problem, thrarpaterized com-
petitive ratio of FF and BF is

2, k=1
Cre(k) = Cge(k) =
Fr(k) Br(k) k k2.

k—1
Proof. The upper bound follows from Theorem 6, and the lower boumd:fe- 3 follows from
Theorem 7. Thus, we only need to prove the lower bound of 2 fer2. To this end, consider the
sequences,)", wheren is a large odd integer and< % FF as well asBF puts all the small
items in the first bin, using + “5* bins in total. OPT on the other hand distributes the small items
one per bin, using bins. This gives a ratio arbitrarily close to 2 ferarbitrarily large. n

Theorem 11. For the On-Line Maximum Resource Bin Packing Problem, thharpaterized com-
petitive ratio of LF is
2, k=1
Cir(k) =
e (%) ks
k—1

13

Proof. Again, we only need to prove the lower bound of 2 foK 2. Letn be a large integer and
e < . The input is given in three phases:

3. (3 —¢,3)"!

Both algorithmsLF andOPT, usen bins for the firsn items, putting one item of siz?and one
item of sizes in each bin.

LF puts all items from phase two in the last bin. It then packddhge items of phase three in the
first n — 1 bins and the small items of phase three in the last bin, usahgobins. OPT, on the
other hand, distributes the items of phase two evenly imtbpen bins, and is able to open a new
bin for each of the: — 1 pairs of items in phase three.

This gives a ratio o% which is arbitrarily close to 2 fon arbitrarily large. O

Investigation of Worst-Fit seems to indicate that it worlesywwell in comparison with the other
algorithms studied here. However, the gap between the |baend of% and the upper bound of
2 remains. Based on our investigation, we conjecture theviatig:

Conjecture 12. For the On-Line Maximum Resource Bin Packing Problem, thepsditive ratio
of WF is2.

5 On-Line Maximum Resource Dual Bin Packing

For this problem, there are exacttybins. An item cannot be rejected if it fits in some bin,
but there are no constraints as to which bins the algorithm us&, except that no bin may be
filled to more thanl. As mentioned in the introduction we consider two objecfivections: the
number of accepted items and the total size of the accepts itFor both objective functions, no
deterministic algorithms is competitive if no bounds aréquthe item sizes.

Theorem 13. For the On-Line Maximum Resource Dual Bin Packing Problerh aticepted total
size as cost function, no deterministic algorithm is contipetin general.

Proof. Letn > 2 be the number of available bins, and AtG be any deterministic algorithm.
The input sequence is constructed in upt@unds. In round, for 1 <i <n — 1, n items of size
¢ are given, for some smadl > 0. If, after theith round,ALG has one or more bins with fewer
than: items, then an item of size— ¢(: — 1) is given.OPT distributes all - n e-items with: items
in each bin, and can thus reject this large item. The perfoomaatio is then

ALG(I) ine+(1—e(i—1)) in—i+1+41

OPT(I) ine in

14

For e arbitrarily small, this ratio can be arbitrarily large.

If, after n — 1 rounds,ALG hasn — 1 items in each of its bins, we give an item of sizes, and
thenn — 1 items of sizel — <(n — 1). ALG has to accept all these item®OPT arranges the first
items, including the item of size=, such that all bins are filled te=. It can then reject all the large
items. This gives a performance ratio of

ALG(I) n*c+ (n—1)(1—¢e(n—1)) C 2n—1+ (n — 1)%
OPT(I) 2 = p

This can again be arbitrarily large ferarbitrarily small. O]

We note that the situation for the parameterized problenkfor 1 is very different from the
situation for the general problem. For evéry- 1, it is not hard to show that any algorithm has
competitive ratio of at most/(k — 1). The reason for this is that ®PT rejected any item at all,
then its bins are full up to at least— 1/k.

The following lower bound tends tb+ for

anyn > 2.

asn tends to infinity and is at least+

(k) S(k 1)

Theorem 14. Consider the On-Line Parameterized Maximum Resource DuaP&cking Problem
with accepted total size as cost function. For> 2, any deterministic algorithm ALG for this

problem has
1o e{[2) [0}

=7

Cac(k) > 1+ wherem = max {j

n(k—1)’

Proof. Let n be the number of bins and let> 0 be a very small constant. Let be the largest
numberl < m < n such thatZ?:m% > 1. Sincel/z is a monotonically decreasing function for
z > 0, we get a lower bound df2 | onm:

1 1 1
Z —>/ dx—lnx]Trj— nC_J >lnn4ﬂ_ zlnn;LF +1>1.

e

For the upper boundy can be at most2 |, since

"1 "ol n n
- —dz =[lnz|t,n =n In— =1.
i%—f—l i S /(”1 * |](ﬂ H) B

Hence, depending on the exact valuewfn is either| 2| or [Z].

The initial input isn! items of sizes. We first prove that, for any packing of these items, there
exists an integei, m < i < n, such that at leastbins receive strictly less th% items.
Assume for the purpose of contradiction that this is not eémec Then, at least one bin has at least

15

HE! small items, and foreach=n—1,n—2,...,m, thereis at least one additional bin that receives
at least—""— items. Since the total number of itemsnis we get thad ;" = —"— < n!, which

is equivalenttdy ;" | 1 < 1. By the definition ofin, this cannot be the case.

Now, pick ani, m < i < n, such that at leasgtbins receive strictly less th% items inALG's
packing. Give

] i—m
n+m-—1
n(k—1)
2. <l>
k

‘_ m
3. <l_—n 1 ,5>
kK n+m-—1

After packing the first — m of these itemsALG still has at leastn bins filled to strictly less than

—L_ ¢ Letr be the number oALG's bins which are completely empty. Since all bins are less

n+m-—i
than full, there is room for exactly.(k — 1) 4 items of size; and at leasinax{m —r,0} items

of size% — % e. Thus,ALG s able to pack the remaining items as well, giving a tota iz

, n! nk—1)+m n!—1
nle + (i —m) -+ — - ME.
n—+m-—1 k n+m-—1

Before the arrival of the sizg items,OPT can pack the items from phase one in one bin each and
distribute the initial! items in the remaining bins to fill all bins up to exactﬂ% e. Each bin
getsk — 1 items of size;, and no further items can be packed. The total size pack&yis

! kE—1
nle + (i —m) n ,5—|—n()
n+m—1i k

As ¢ decreases, the ratio converges to %]

The lowest possible value éf is ; which is obtained when equals3, 6 or 9.

For the case where the objective function is the number aé@ed items, the situation is even
worse.

Theorem 15. For the On-Line Parameterized Maximum Resource Dual BirkidgdProblem with
the number of accepted items as cost function, no detetmiaigorithm is competitive, for any
k.

Proof. Letn > 2 be the number of bins available, and AdtG be any deterministic algorithm.

16

The input sequence begins witthn — 2 items of sizei. ALG fills all but at most two bins
completely, and the remaining two bins are either both filtetl — ﬁ or one is filled completely
and the other ta — ;.

In the first case, the sequence continues with one item of%s'mead Léj items of sizes. ALG
rejects the first of these and accepts all of the small o@d#2T, on the other hand, arranges the
items of size2—1k, so that all but one bin is full, the item of si%efits in that last bin, and all the
small items are rejected.

In the second case, the sequence continues with one iterzeoj,;sik e, two items of size;—, and
Lﬁj — 1 items of sizes. ALG accepts the first of these items, rejects the next two, arepécall
the small itemsOPT, on the other hand, rejects the first of these items, acdeptsext two, and
rejects all the small items.

By makinge arbitrarily small, the number of items acceptedAdyG can be made arbitrarily large,
while the number of items accepted O T is either2nk — 1 or 2nk. O

6 Concluding Remarks

The most interesting open problem is to prove that the o#-lnaximum resource bin packing
problem is NP-hard (or to find a polynomial time algorithm ifgpr

For the off-line version of the problem, we have investigdt@st-Fit-Decreasing, which is worst
possible, and First-Fit-Increasing, which performs bedted obtains an approximation ratio of
g. It would be interesting to establish a general lower boundh@ problem, and, if it is lower
thang, to determine the optimal algorithm for the problem. Doesr¢hexist a polynomial time
approximation scheme for the off-line version?

For the on-line version, we have considered the two stanbiargacking problems from the lit-
erature. For dual bin packing, no algorithm is competitivgéneral, independent of whether the
cost measure is the total size or the total number of accefees$. With the total accepted size
as cost function, the situation is completely differenttfoe parameterized version; fbr> 2, any

algorithm has a parameterized competitive ratio betwieen' and about + m

For the classic variant of on-line bin packing, we have distiagéd general upper and lower bounds
and proved that First-Fit, Best-Fit, and Last-Fit performrst@ossible. The behavior of Worst-Fit
seems very promising, but we leave it as an open problem &vrdete its competitive ratio.

7 Acknowledgments

First of all, we would like to thank Michael Bender for suggegtthe problem and for interesting
initial discussions. We would also like to thank Morten HegNielsen for interesting discussions
at the 3rd NOGAPS, where the work on the problem was initiatedddition, we are thankful to

17

Gerhard Woeginger for comments on an earlier version ofghser and the anonymous referees
for their comments.

References

[1]

[2]

E.M. Arkin, M.A. Bender, J.S.B. Mitchell, and S. Skiena. élhazy Bureaucrat scheduling
problem.Information and Computatiqri84(1):129-146, 2003.

S.F. Assman, D.S. Johnson, D.J. Kleitman, and J.Y-TnigelOn a dual version of the one-
dimensional bin packing problend. Alg, 5(4):502-525, 1984.

[3] A. Bar-Noy, R.E. Ladner, and T. Tamir. Windows schedulirsgaarestricted version of bin

packing. InProc. 12th Annual ACM-SIAM Symposium on Discrete Algorithpages 224—
233, 2004.

[4] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysi€ambridge

[5]

[6]

[7]

University Press, 1998.

J. Boyar and L.M. Favrholdt. The relative worst order@dtr on-line algorithms. IrAlgo-
rithms and Complexity: 5th Italian Conferenosmlume 2653 oLecture Notes in Computer
Sciencepages 58—-69. Springer-Verlag, 2003.

J. Boyar and L.M. Favrholdt. The relative worst order adfior on-line bin packing algo-
rithms. Technical report PP—2003-13, Department of Mattms and Computer Science,
University of Southern Denmark, 2003.

J. Csirik, J.B.G. Frenk, M. Lal#h and S. Zhang. Two simple algorithms for bin covering.
Acta Cybernetical4(1):13-25, 1999.

[8] J. Csirik, D.S. Johnson, and C. Kenyon. Better approxinmadilgorithms for bin covering.

[9]

[10]

[11]

[12]

In Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithpages 557-566, 2001.

L. Epstein and M. Levy. Online interval coloring and \aamts. InProc. 32nd International
Colloquium on Automata, Languages and Programmiajume 3580 ofLecture Notes in
Computer Sciengg@ages 602—613. Springer-Verlag, 2005.

M.R. Garey and D.S. JohnsorComputers and Intractability — A Guide to the Theory of
NP-CompletenesdV. H. Freeman and Company, 1979.

R.L. Graham. Bounds for certain multiprocessing anoesaBell Systems Technical Journal
45:1563-1581, 1966.

R. Hassin and S. Rubinstein. An approximation algoritemtfie maximum traveling sales-
man problemlInformation Processing Letter§7(3):125-130, 1998.

18

[13] D.S. Hochbaum, editoApproximation Algorithms for NP-Hard ProblemBWS Publishing
Company, 1997.

[14] K. Jansen and R. Solis-Oba. An asymptotic fully polynalime approximation scheme for
bin covering.Theoretical Computer Sciencg06(1-3):543-551, 2003.

[15] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, and Blaham. Worst-case perfor-
mance bounds for simple one-dimensional packing algostf®hAM J. Comp.3:299-325,
1974.

[16] D.R. Karger, R. Motwani, and G.D.S. Ramkumar. On approfimgathe longest path in a
graph.Algorithmicg 18(1):82-98, 1997.

[17] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. n(petitive snoopy caching.
Algorithmica 3(1):79-119, 1988.

[18] D.D. Sleator and R.E. Tarjan. Amortized efficiency of lipdate and paging rule€ommu-
nications of the ACM28(2):202—-208, 1985.

19

