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Abstract

Usually, for bin packing problems, we try to minimize the number of bins used or inthe
case of the dual bin packing problem, maximize the number or total size of accepted items.
This paper presents results for the opposite problems, where we would liketo maximize the
number of bins used or minimize the number or total size of accepted items. We consider
off-line and on-line variants of the problems.

For the off-line variant, we require that there be an ordering of the bins,so that no item in
a later bin fits in an earlier bin. We find the approximation ratios of two natural approximation
algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of
classical bin packing.

For the on-line variant, we define maximum resource variants of classical and dual bin
packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing,
we find the competitive ratio of various natural algorithms.

We study the general versions of the problems as well as the parameterizedversions where
there is an upper bound of1

k
on the item sizes, for some integerk.

∗The work of Boyar, Favrholdt, Kohrt, and Larsen was supported in part by the Danish Natural Science Research
Council (SNF). The work of Epstein was supported in part by the Israel Science Foundation (ISF). A preliminary
version of this paper appeared in theFifteenth International Symposium on Fundamentals of Computation Theory,
volume 3623 of Lecture Notes in Computer Science, pages 397–408. Springer-Verlag, 2005.
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1 Introduction

Many optimization problems involve some resource, and the task for algorithm designers is typi-
cally to get the job done using the minimum amount of resources. Below, we give some examples.

Bin packing is the problem of packing items of sizes between zero and one in the smallest possible
number of bins of unit size. Here, the bins are the resources.The traveling salesperson problem is
the problem of finding a tour which visits each vertex in a weighted graph while minimizing the
total weight of visited edges. Here the weight is the resource. Scheduling jobs on a fixed number
of machines is the problem of minimizing the completion timeof the last job. Here time is the
resource.

Each of these problems comes in many variations and there aremany more entirely different op-
timization problems. Since these problems are computationally hard assuming that P6= NP, the
optimal solution can usually not be computed in reasonable time for large instances, so polyno-
mial time approximation algorithms are devised. For many ofthese problems, there are interesting
variants where the entire instance is not known when the computation must commence. The area
of on-line algorithms deals with this problem scenario.

For detailed descriptions of many of these problems and their solutions in terms of approximation
or on-line algorithms, see [4, 10, 13], for instance.

For all of these problems, minimizing the resources used seems to be the obvious goal. However,
if the resource is not owned by the problem solver, but is owned by another party who profits
from selling the resource, there is no longer agreement about the objective, since the owner of the
resource wants to maximize the resources used, presumably under some constraints which could be
outlined in a contract. Thus, many of the classical problemsare interesting also when considered
from the reverse perspective of trying to maximize the amount of resources that are used.

In [1], the Lazy Bureaucrat Scheduling Problem is considered. Here, tasks must be scheduled and
processed by an office worker. The authors consider various constraints and objective functions.
The flavor of the constraints is that the office worker cannot sit idle if there is work that can be done,
and the office worker’s objective is to schedule tasks under these constraints so as to minimize the
work carried out; either total work, arranging to leave workas early as possible, or a similar goal.
Though it is presented as a toy problem, it is an important view on some optimization problems,
and many other problems are interesting in this perspective, provided that the constraints imposed
on the problem are natural.

Also other problems have been investigated in this reverse perspective, e.g., longest path [16],
maximum traveling salesperson problem [12] and lazy onlineinterval coloring [9].

Maximum Resource Bin Packing

In this paper, we consider bin packing from the maximum resource perspective. We consider it
as an approximation problem, but we also investigate two on-line variants of the problem. To our
knowledge, this is the first time the reverse perspective of aproblem has been considered in an
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on-line setting. Note that the complexity status of the off-line problems studied in this paper is
open.

The abstract problem of packing items of a given size into bins has numerous concrete applica-
tions, and for many of these, when the resource must be purchased, the reverse problem becomes
interesting for one of the parties involved. We use the following concrete problem for motivation.

Assume that we hire a company to move some items by truck from one site, the origin, to another,
the destination. Say that the price we must pay is proportional to the number of trucks used. Some
companies may try to maximize the number of trucks used instead of trying to get the items packed
in few trucks. To prevent the company from cheating us, the following constraint has been placed
on the packing procedure:

Constraint 1: When a truck leaves the origin, none of the unpacked items remaining at the origin
should fit into that truck.

In the off-line variant,Off-Line Maximum Resource Bin Packing, we are given an unlimited number
of unit sized bins and a sequence of items with sizes in(0, 1], and the goal is to maximize the
number of bins used to pack all the items subject to Constraint1. A set of items fits in a bin if
the sum of the sizes of the items is at most one. In the off-linevariant, there must be an ordering
of the bins such that no item in a later bin fits in an earlier bin. Explained using the motivating
example, Constraint 1 can be illustrated as follows: Trucks arrive at the origin one at a time. A
truck is loaded, and may leave for its destination when none of the remaining items can fit into the
truck. At this time, the next truck may arrive.

On-Line Maximum Resource Bin Packingis similar to the off-line version. However, the problem is
on-line, meaning that items are revealed one at a time, and each item must be processed before the
next item becomes available. Because of the on-line nature ofthe problem, instead of Constraint 1,
the following modified constraint is used:

Constraint 2: The company is not allowed to begin using a new truck if the current item fits in a
truck already being used.

Thus, the on-line algorithm is allowed to open a new bin everytime the next item to be processed
does not fit in any of the previous bins. The objective is stillto use as many bins as possible. Thus,
all partly loaded trucks are available all the time, and whenever an item does not fit, a new truck
may pull up to join the others.

We also consider another on-line problem,On-Line Dual Maximum Resource Bin Packing. Here,
the number of available bins is fixed. For each item, an algorithm has to accept it and place it in
one of its bins, if it is possible to do so. Thus, here a fixed number of trucks have been ordered. In
this case, neither Constraint 1 nor Constraint 2 is used; the objective is not to maximize the number
of trucks used, since this number is fixed. There are two possible objective functions: the number
of accepted items or the total size of the accepted items. In both cases, the objective is to minimize
this value. Thus, the truck company wants to pack as few itemsor as little total size as possible
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into the trucks, minimizing the fuel needed for each truck, or maybe hoping to get a new order of
trucks for the items which do not fit into the fixed number of trucks which have been ordered.

For all three problems, we study the general version as well as the parameterized version where
there is an upper bound of1

k
on the item sizes, for some integerk.

A closely related problem is the Bin Covering Problem. In this problem, the algorithm is given a
sequence of items and has to place them in bins, while trying to maximize the number of bins that
contain items with a total size of at least one. This is quite similar to Off-Line Maximum Resource
Bin Packing with bins twice as large and Constraint 1 replaced by the following weaker constraint:

Constraint 3: No pair of trucks leaving the origin may have a total load of items that could have
been packed in one truck.

The problem is NP-complete but has an asymptotic fully polynomial time approximation scheme
(AFPTAS) [14]. Further results on that problem can be found in [2, 7, 8].

Our Results

For Off-Line Maximum Resource Bin Packing, we show that no algorithm has an approximation
ratio of more than17

10
. For the parameterized version, the upper bound is1 + 1

k
for k ≥ 2. The

algorithm First-Fit-Decreasing is worst possible in the sense that it meets this upper bound. First-
Fit-Increasing is better; it has a competitive ratio of6

5
and a parameterized competitive ratio of

1 + k−1
k2+1

for k ≥ 2. See Section 2 for a definition of the algorithms.

For On-Line Maximum Resource Bin Packing, we prove a general lower bound of3
2

on the param-
eterized competitive ratio fork ≤ 3 and1 + 1

k−1
for k ≥ 3. We prove a general upper bound of 2

for k ≤ 2 and1 + 1
k−1

for k ≥ 2. Hence, fork ≥ 3, all algorithms have the same parameterized
competitive ratio. We prove that First-Fit, Best-Fit, and Last-Fit all meet the general upper bound.

For On-Line Maximum Resource Dual Bin Packing, we prove that ifthe objective function is the
total numberof items packed, no deterministic algorithm is competitive; this also holds for any
value ofk for the parameterized problem. If the objective function isthe totalsizeof the packed
items, no algorithm for the general problem is competitive.For the parameterized version, we
prove general lower and upper bounds of1 + 1

e(k−1)
and1 + 1

k−1
, respectively.

The proof of Theorem 3, below, showing that for Off-Line Maximum Resource Bin Packing,
the approximation ratio of First-Fit-Increasing is6

5
, uses a new variant of the standard weighting

argument. That result also gives a connection between Off-Line Maximum Resource Bin Packing
and the relative worst order ratio for on-line algorithms for the classical bin packing problem. The
relative worst order ratio [5] is a new measure for the quality of on-line algorithms. Theorem 3
has been used to prove the upper bound on a result comparing First-Fit to Harmonic(k) using the
relative worst order ratio [6]. Perhaps other “reverse” problems will have similar connections to
the relative worst order ratio.
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2 Notation and Algorithms

The input is a sequence of items,I = 〈s1, s2, . . . , sn〉. For convenience, we identify an item with
its size and require that itemsi has size0 < si ≤ 1 (or 0 < si ≤

1
k
, for some integerk, for the

parameterized problem). The items have to be placed in bins of size one.

For any input sequenceI, let ALG(I) be both the packing produced when runningALG on this
input sequence and the number of bins used for this packing. In particular, letOPTbe an algorithm
which produces an optimal packing and thus uses as many bins as possible subject to Constraint 1.
Let OPT(I) be both this packing and the number of bins used.

Let SMALL(I) be a packing using the minimum number of bins that the items from I can be
packed in without putting items with sizes totaling more than one in any bin, and letSMALLbe an
algorithm that creates this packing. Note thatSMALL is an optimal algorithm from the classical
bin packing problem, but for Maximum Resource Bin Packing, it is a worst possible algorithm.

An approximation algorithmALG is a c-approximation algorithm, c ≥ 1, if there is a constantb
such that for all possible input sequencesI, OPT(I) ≤ c ALG(I) + b. The infimum of all such
c is called theapproximation ratioof the algorithm,RALG. For the parameterized problem, we
consider theparameterized approximation ratio, RALG(k), which is the approximation ratio in the
case where all items have size at most1

k
for some integerk.

An important algorithm in this context is First-Fit (FF), which places an item in the first bin in
which it fits.

In this paper, we investigate two well known off-line variants ofFF in detail:

• First-Fit-Increasing(FFI ) handles items in non-decreasing order with respect to their sizes,
placing them using First-Fit.

• First-Fit-Decreasing(FFD) handles items in non-increasing order with respect to their sizes,
also placing them using First-Fit.

In the on-line variants of the problem, the algorithms receive the input, i.e., the items, one at a time
and have to decide where to pack the item before the next item (if any) is revealed.

Similarly to the approximation ratio for approximation algorithms, the performance of determin-
istic on-line algorithms is measured in comparison with theoptimal off-line algorithmOPT [11,
17, 18]. An on-line algorithmALG is c-competitive, c ≥ 1, if there is a constantb such that for
all possible input sequencesI, OPT(I) ≤ c ALG(I) + b. The infimum of all suchc is called the
competitive ratioof the algorithm,CALG. For the parameterized problem, we consider theparame-
terized competitive ratio, CALG(k), which is the competitive ratio in the case where all items have
size at most1

k
for some integerk.

For the on-line variants, we consider the following naturalalgorithms, all of which, except for
Last-Fit, have been well studied in other contexts:

• First-Fit (FF) as defined previously.
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• Last-Fit (LF) is the opposite ofFF, i.e., it places a new item in the last opened bin in which
it fits.

• Best-Fit(BF) places the item in a feasible bin which is as full as possible, i.e., a feasible bin
with least free space.

• Worst-Fit (WF) is the opposite ofBF, i.e., it places an item in a feasible bin with most free
space.

3 Off-Line Maximum Resource Bin Packing

For Off-Line Maximum Resource Bin Packing, the goal is to maximize the number of bins used,
subject to Constraint 1, so there must be an ordering of the bins such that no item placed in a later
bin fits in an earlier bin. We show that no algorithm for the problem has an approximation ratio
worse than17

10
. Then, we use the proof that for classical Bin Packing, First-Fit’s approximation

ratio is 17
10

[15] to prove thatFFD has this worst possible approximation ratio. After that we show
thatFFI has a better ratio of6

5
.

The first two theorems show a relation between the classical minimization problem for bin packing
and this maximization problem. When considering a worst possible algorithm for Off-Line Max-
imum Resource Bin Packing, one considers the algorithm,SMALL, the optimal algorithm for the
minimization problem.

Theorem 1 (General upper bound). For the Off-Line Maximum Resource Bin Packing Problem,
any algorithm ALG has a parameterized approximation ratio of

RALG(k) ≤











17

10
, k = 1

1 +
1

k
, k ≥ 2.

Proof. Consider any multiset of requests,I. The minimum number of bins,m, ALG could use on
I is no less than the number of bins used bySMALL.

ConsiderOPT’s packing ofI, and create an ordered listI ′ containing the items inI, starting with
the itemsOPT packed in the first bin, followed by those in the second bin, etc., until all items have
been included.

By the restrictions on what an algorithm may do, First-Fit packs the items inI ′ exactly asOPT
packed the items ofI. By [15], the number of bins,n, used by First-Fit is at most17

10
m + 2, if

k = 1, and at most(1 + 1
k
)m+ 2, if k ≥ 2. Thus,OPT uses at most17

10
m+ 2 bins, if k = 1, and at

most(1 + 1
k
)m+ 2 bins, if k ≥ 2, giving the stated ratio.

Note that the packing bySMALLis the optimal result from the point of view of a client of the truck
company. Thus, Theorem 1 implies that if a client checks thatConstraint 1 is obeyed, it will pay
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no more than about1.7 times what it would pay if the truck company was serving the client’s best
interests. This gives a bound on how bad such a contract can befrom the client’s point of view.

We now show that Theorem 1 is tight: First-Fit-Decreasing has this approximation ratio.

Theorem 2. For the Off-Line Maximum Resource Bin Packing Problem, the parameterized ap-
proximation ratio of FFD is

RFFD(k) =











17

10
, k = 1

1 +
1

k
, k ≥ 2.

Proof. The upper bounds follow from the previous theorem. To prove the lower bounds, we use
the sequences and proofs from [15]. We observe thatFFD produces essentially the same packing
asSMALL(OPT in the proofs in [15]). The packings produced byFF in [15] satisfy Constraint 1,
so the results in [15] show that for every positive integerK there exist sequences whereFFD uses
at most10K+1 bins whileOPTuses17K bins. For the parameterized problem,FFD usesK bins
andOPT uses at leastK + K

k
bins. The result follows.

We now turn to the better algorithm,FFI .

Theorem 3. The parameterized approximation ratio of FFI is

RFFI(k) =















6

5
, k ≤ 3

k2 + k

k2 + 1
, k ≥ 4.

We prove the lower bound first.

Lemma 4. The parameterized approximation ratio of FFI is

RFFI(k) ≥















6

5
, k ≤ 3

k2 + k

k2 + 1
, k ≥ 4.

Proof. Fork ≤ 2 we use the following input:n items of size1
2

andn items of size1
3
, wheren is a

large integer divisible by 6. The optimal packing is to put one item of size1
2

and one item of size
1
3

in each bin. This makesOPT usen bins, each with a fraction of1
6

empty space. On the other
hand,FFI packsn

3
bins, each containing three elements of size1

3
, followed by n

2
bins, each with

two items of size1
2
. Hence, in total,FFI uses5n

6
bins, and the ratio follows.

For k = 3 (andk = 2) the fraction k2+k
k2+1

equals6
5
, so we can prove this case with thek ≥ 4

case. Fork ≥ 3 we use a slightly more complicated sequence. Letn be a large integer. The input
contains
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• n(k2 − 1) items of size 1
k+1

and

• n(k + 1) items of size1
k
.

FFI usesn(k − 1) bins for the smaller items andn(k + 1)/k bins for the larger ones, which is
n(k2 + 1)/k in total. All the bins are completely full. An optimal packing would be to combine
one larger item withk − 1 smaller ones, usingn(k + 1) bins. Each bin is thus full by a fraction of
1
k
+ k−1

k+1
> k

k+1
, which makes the packing valid. The approximation ratio forthis sequence is thus

exactly k2+k
k2+1

.

Note that in this case,FFI ’s packing is actually the same as the packing made bySMALL. This is
not always the case, though.

Lemma 5. The parameterized approximation ratio of FFI is

RFFI(k) ≤















6

5
, k ≤ 3

k2 + k

k2 + 1
, k ≥ 4.

Proof. We first prove the casek ≤ 3 which is slightly different from the other cases and has to be
treated separately. For this part of the proof, we do not assume an upper bound on the item sizes.

We assign weights to items in the following way. For all itemsin the interval(0, 1
6
] (small items),

the weight is defined to be equal to the size. An item which belongs to an interval( 1
i+1

, 1
i
] for some

i = 1, 2, 3, 4, 5 (large items), is assigned the weight1
i
.

The intuition for this weighting comes from considering a bin in the packing made byFFI that
contains only items from a single interval( 1

i+1
, 1
i
], i ∈ {1, 2, 3, 4, 5}. This bin contains at mosti

items, and therefore each item in such a bin can be thought of as contributing1
i

to the total size of
items plus empty space inFFI ’s packing.

Let W be the total weight of the items in a given input sequence. We prove thatFFI + 5 ≥ W ≥
5
6
(OPT− 5), which implies the upper bound.

Consider first the optimal solutionOPT. We show that the total weight of items is at leastW ≥
5
6
(OPT− 5). To show that, we claim that all bins inOPT, except for at most five bins, have items

of weight at least5
6
. First, consider the bins containing at least one small item. Due to Constraint 1,

there is at most one such bin whose total sum of item sizes is less than5
6
. Note that the weight of an

item is at least its size. A bin which contains items of total size of at least5
6

has weight at least that
amount. A bin which contains an item larger than1

2
has weight at least1. Therefore, we only need

to consider bins containing only items in(1
6
, 1
2
]. We define a pattern to be a multiset of numbers in

1
2
, 1
3
, 1
4
, 1
5

whose sum is at most1. The type of a pattern is the inverse of the smallest number init.
A patternP of typej is a maximal pattern if adding another instance of1

j
to P , would not result

in a pattern, i.e.P ∪ {1
j
} is not a pattern. The pattern of a bin is the multiset of the weights of its

items.
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For eachj = 2, 3, 4, 5, the packing has at most one bin whose pattern is of typej but is not
maximal. We show that a bin of any maximal pattern has weight at least 5

6
1. The only maximal

pattern of type2 is {1
2
, 1
2
}. The maximal patterns of type3 are{1

3
, 1
3
, 1
3
} and{1

2
, 1
3
}. Consider a

maximal pattern of type4. We need to show that the sum of elements in the pattern is at least
5
6
. Let a, b, c be the amounts of1

2
, 1
3
, and 1

4
in the pattern. If the sum is less than5

6
, we have

3
4
< a

2
+ b

3
+ c

4
< 5

6
. This gives9 < 6a + 4b + 3c < 10. Sincea, b, c are integers, this is

impossible. Similarly, consider a maximal pattern of type5. Leta, b, c, d be the amounts of1
2
, 1
3
, 1
4
,

and 1
5

in the pattern. If the sum is less than5
6
, we have4

5
< a

2
+ b

3
+ c

4
+ d

5
< 5

6
. This gives

48 < 30a+20b+15c+12d < 50 or 30a+20b+15c+12d = 49. Sincea, b, c, d are non-negative
integers, this combination is impossible.

Consider now the packing ofFFI . We show that the total weight of items is at mostW ≤ FFI +5.
Note that the algorithm actually acts as Next Fit Increasingand never assigns an item to an old bin
once a new bin is opened. A bin ofFFI is called a transition bin if it has both at least one small
item and at least one other item, or it has only large items, but it contains items of distinct weights.
The last case means that the algorithm is done packing all items of weight1

j
for some5 ≥ j ≥ 2

and has started packing items of weight1
j−1

. Therefore, there are at most five transition bins. In
any other bin, the sum of the weights of the items is at most one; this is clear if there are only
small items whose weights are equal to their sizes. For otheritems, there arej items of weight1

j

in a bin containing only such items. For the transition bins,the total weight of items whose size
is at most one can be at most2, so for each of these five bins there is excess weight of1, giving
W ≤ FFI + 5. HenceOPT≤ 6

5
FFI + 11.

We now prove the lemma fork ≥ 4. We slightly revise the definitions. Items are small if they are
in the interval(0, 1

k+3
]. The weight of a small item is its size. An item which belongs to an interval

( 1
i+1

, 1
i
] for somei = k, k + 1, k + 2, is assigned the weight1

i
.

Consider the optimal solutionOPT. We show that the total weight of items is at leastW ≥
(k2 + 1)(OPT− 4)/(k2 + k). To show that, we claim that all bins except for at most four bins
have items of weight at least(k2 + 1)/(k2 + k). First, consider the bins containing at least one
small item. Due to Constraint 1, there is at most one such bin whose total sum of items is less than
1− 1

k+3
= k+2

k+3
≥ k2+1

k2+k
(which holds for allk ≥ 3).

Note that the weight of an item is at least its size. A bin whichcontains items of total size at least
k2+1
k2+k

has weight at least that amount. We need to consider bins containing only items in( 1
k+3

, 1
k
].

We define a pattern to be a multiset of numbers in1
k+2

, 1
k+1

, 1
k

whose sum is at most1. Again, we
define the type of a pattern as the inverse of the smallest itemin it.

For eachj = k, k + 1, k + 2, the packing has at most one bin whose pattern is of typej but is not
maximal. We show that a bin of any maximal pattern has weight at leastk

2+1
k2+k

. The only maximal
pattern of typek is { 1

k
, . . . , 1

k
}.

Consider a maximal pattern of typek+1. We need to show that the sum of elements in the pattern
is at leastk

2+1
k2+k

. Let a andb be the amounts of1
k

and 1
k+1

in the pattern. If the sum is less than

1The paper [3] showed a similar result on patterns for a different purpose.
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k2+1
k2+k

, we have k
k+1

< a
k
+ b

k+1
< k2+1

k2+k
. This givesk2 < (k + 1)a + kb < k2 + 1. Sincea andb

are integers, this is impossible. Similarly, consider a maximal pattern of typek + 2. Let a, b, and
c be the amounts of1

k
, 1

k+1
, and 1

k+2
in the pattern. If the sum is less thank

2+1
k2+k

, we havek+1
k+2

<
a
k
+ b

k+1
+ c

k+2
< k2+1

k2+k
. This givesk(k+1)2 < (k+2)(k+1)a+k(k+2)b+k(k+1)c < (k2+1)(k+2)

or a(k2+3k+2)+ b(k2+2k)+ c(k2+k) = k(k+1)2+1. We need to exclude the existence of an
integer solution fora, b, andc. Assume that such a solution exists. Note thata+b+c < k+2, since
otherwise the left hand side is at leastk(k+1)(k+2) > k(k+1)2+1. Also note thata+b+c > k−1,
since otherwise the left hand side is at most(k+1)(k+2)(k−1) < k(k+1)2+1. If a+b+c = k+1
we get(a+b+c)(k2+k)+2a(k+1)+kb = k(k+1)2+1. Simplifying, we have2a(k+1)+kb = 1,
which is clearly impossible. Ifa+ b+ c = k, we need that2a(k+1)+kb = k2+k+1. Rewriting,
2a − 1 = k(k + 1 − b − 2a), so2a − 1 must be divisible byk. Clearly,a cannot be zero. Since
0 < a ≤ k anda is an integer, the only value it can have isk+1

2
, but this givesb = −1 which is

impossible.

Now consider the packing ofFFI . The total weight of items is at mostW ≤ FFI + 4 since there
can be only four transition bins. This implies the upper bound on the approximation ratio.

4 On-Line Maximum Resource Bin Packing

For On-Line Maximum Resource Bin Packing, the goal is to maximize the number of bins used
subject to Constraint 2, so the algorithm is only allowed to open a new bin if the current item does
not fit in any open bin. Note that the optimal algorithm must process the requests in the same order,
obeying Constraint 2, even though it “knows” the entire sequence in advance. We have matching
lower and upper bounds for most algorithms, and we conjecture that the algorithm Worst-Fit (WF)
has an optimal competitive ratio of3

2
.

Theorem 6 (General upper bound). For the On-Line Maximum Resource Bin Packing Problem,
any algorithm ALG has a parameterized competitive ratio of

CALG(k) ≤







2, k = 1

k

k − 1
, k ≥ 2.

Proof. Fork = 1, this is proven using the fact that for any algorithm, all bins, except possibly one,
are at least half full. Fork ≥ 2, we use the fact that all bins, except possibly one, are full to at least
k−1
k

.

Fork ≥ 3, Theorem 6 is tight for deterministic algorithms:

Theorem 7 (General lower bound). Any deterministic on-line algorithm ALG has a parameterized
competitive ratio of

CALG(k) ≥











3

2
, k ≤ 2

k

k − 1
, k ≥ 3.
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The theorem follows from Lemmas 8 and 9 handling the casesk ≤ 2 andk ≥ 3 respectively.

Lemma 8. There exists a family of sequencesIn with items no larger than1
2

such that OPT(In) →
∞ for n → ∞ and, for any deterministic on-line algorithm ALG,

OPT(In) ≥
3

2
ALG(In).

Proof. The sequence is given in phases. Each phase begins with〈1
2
, ε, 1

2
, ε〉, whereε < 1

12
. For

this sequence, there are two possible packings:

1
2

ε

1
2

ε
or

1
2

ε
ε

1
2

If the on-line algorithm chooses the first packing, the sequence continues with〈2ε, 1
2
− ε, 1

2
− 3ε〉,

filling up the two on-line bins. An optimal off-line algorithm chooses the second packing, places
the2ε-item in the second bin, and opens a new bin for the last two items. Thus,OPT uses three
bins, and has all bins filled to at least1

2
+ 2ε.

If the on-line algorithm chooses the second packing, the sequence continues with〈1
2
, 1

2
−4ε, ε, ε〉.

In this case, an optimal off-line algorithm chooses the firstpacking, and thus opens a new bin for
the first two of the last four items. The last two items are placed in the first two bins. Again,OPT
uses three bins and has all bins filled to at least1

2
+ 2ε.

Since each on-line bin is filled completely and each off-linebin is filled to at least1
2
+ 2ε, this can

be repeated arbitrarily many times, with the result thatALGuses two bins per phase andOPT uses
three bins per phase.

Lemma 9. For k ≥ 3, there exists a family of sequencesIn with items no larger than1
k

such that
OPT(In) → ∞ for n → ∞ and, for any deterministic on-line algorithm ALG,

OPT(In) ≥
k

k − 1
ALG(In)−

1

k − 1
.

Proof. The sequence consists of an initial subsequence followed byn phases. Let0 < ε <
1

4k2(n+1)
be a very small constant. The sequence is constructed in sucha way that after the initial

subsequence, and also after every phase,OPT has the first bin filled tok−1
k

+ 2kε and all other
open bins filled to exactlyk−1

k
+2ε. The on-line algorithm has all open bins fully occupied, except

the first bin that is always filled to at leastk−1
k

+ 2kε.

The sequence starts with
〈

(k − 1)× 1
k
, 2kε

〉

. After this, any algorithm has a single open bin (here-
after denoted the first bin) which is full up tok−1

k
+2kε. The purpose of this initial subsequence is

11



to let the on-line algorithm have a bin where it puts one or more items of total size of up to4kε in
each phase.

The rest of the sequence is given inn phases. Each phase starts with
〈

(k − 1)× 1
k
, ε
〉

repeated
k − 1 times. No algorithm can open more thank − 1 bins for thesek(k − 1) items. Actually, any
algorithm uses exactlyk− 1 bins for the sequence, since the total size of the1

k
items is larger than

k − 2.

We consider two cases, according to how the on-line algorithm distributes the first items of the
current phase.

• Case A: ALG assigns exactly the amountk−1
k

+ ε to each new bin.In this case,ALGassigns
the items exactly as Worst-Fit would do, for example, the packing fork = 4 looks as follows.

1
4

1
4

1
4

O(kǫ)

· · ·

1
4

1
4

1
4

ε

1
4

1
4

1
4

ε

1
4

1
4

1
4

ε

Note thatALGhas placed some number ofO(kǫ)-items in the first bin. All bins between the
first bin and the newk − 1 bins are completely full.

In this case, we add〈(k − 3)× ε, 2ε〉 to the phase. Since there are onlyk − 2 additional
items, at least one bin opened byALG in the current phase is full exactly up tok−1

k
+ ε. OPT

places the items such that all of its bins are filled to exactlyk−1
k

+ 2ε except for the first bin
which is filled to k−1

k
+ 2kε.

Next, we order the bins used byALG in this phase (not including the first bin if it was used)
in order of how much space they have left in non-increasing order. Letsi, 1 ≤ i ≤ k − 1
be the space left in bini of this phase by this ordering. Then1

k
− kε ≤ si ≤ 1

k
− ε for

1 ≤ si ≤ k − 1. The first bin has at most1
k
− 2kε space left. All remaining bins ofALGare

completely full. We now addk − 1 items with sizes〈s1, s2, . . . , sk−1〉 to the phase. These
will fit exactly in thek − 1 bins. After this all the bins ofALG, except for the first bin, are
completely full.

After thek − 2 additional items, all ofOPT’s bins have at most1
k
− 2ε space left. Conse-

quently using the first item of size1
k
− ε, OPT can open a new bin and it places this and all

the subsequent items in this bin.

The last item of this phase consists of one item of sizek−1
k

+ 2ε−
∑k−1

i=1 si. This is between
(k + 1)ε and2kε. ALGhas to place this in the first bin, whereasOPT can place it in its new
bin such that all ofOPT’s bins except the first are exactlyk−1

k
+ 2ε full.

12



• Case B: After the first part of the phase, ALG does not havek−1
k

+ ε in each new bin.In
this case,OPT has exactlyk−1

k
+ ε in each new bin. No matter howALG distributes the

items, it hask − 1 new bins, one of which is filled to at mostk−1
k

. Similar to Case A, we
order the bins according to the space they have left. Ifs1 > 1

k
, then some of thek − 1 new

bins must be completely full, and we first give some items of size 1
k

until s1 ≤ 1
k

before we
proceed as in case A. Otherwise we simply do as in Case A, givingk − 1 items with sizes
〈s1, s2, . . . , sk−1〉. In either case the first item has size1

k
and in general the size of items in

this subphase is between1
k
− (k − 1)ε and 1

k
. After thesek − 1 items allk − 1 new bins of

ALGare completely full.

SinceOPTopens a new bin for the item of size1
k
, it can place all the items arriving afterwards

in the same bin after which the bin is betweenk−1
k

− (k − 1)ε and k−1
k

full. The final items
of this phase arek − 1 items of sizeε, and one item of sizek−1

k
+ 2ε minus the space used

in OPT’s new bin. The firstk− 1 bins ofOPT opened in this phase receive an item of sizeε
to achieve a total ofk−1

k
+ 2ε, and the last one receives the larger item for the same purpose.

These items are placed in the first bin byALG (since all its other bins are full).

Note, that in either case we place one or more items of a total size of at most4kε in ALG’s first
bin. Sinceε < 1

4k2(n+1)
, the space needed in the first bin isk−1

k
+ 4k(n+ 1)ε < 1.

We getALG(In) = (k−1)n+1 whereasOPT(In) = kn+1. Hence,ALG(In) = k−1
k
·OPT(In)+ 1

k
,

or OPT(In) = k
k−1

· ALG(In)− 1
k−1

.

By Theorems 6 and 7, any on-line algorithm has the same competitive ratio fork ≥ 3, i.e., the only
possible gap is fork ≤ 2. For this case, we consider the algorithms First-Fit, Best-Fit, Last-Fit,
and Worst-Fit.

Theorem 10. For the On-Line Maximum Resource Bin Packing Problem, the parameterized com-
petitive ratio of FF and BF is

CFF(k) = CBF(k) =







2, k = 1

k

k − 1
, k ≥ 2.

Proof. The upper bound follows from Theorem 6, and the lower bound for k ≥ 3 follows from
Theorem 7. Thus, we only need to prove the lower bound of 2 fork ≤ 2. To this end, consider the
sequence〈1

2
, ε〉n, wheren is a large odd integer andε ≤ 1

2n
. FF as well asBF puts all the small

items in the first bin, using1+ n−1
2

bins in total.OPT on the other hand distributes the small items
one per bin, usingn bins. This gives a ratio arbitrarily close to 2 forn arbitrarily large.

Theorem 11. For the On-Line Maximum Resource Bin Packing Problem, the parameterized com-
petitive ratio of LF is

CLF(k) =







2, k = 1

k

k − 1
, k ≥ 2.

13



Proof. Again, we only need to prove the lower bound of 2 fork ≤ 2. Letn be a large integer and
ε ≤ 1

8n−4
. The input is given in three phases:

1. 〈1
2
, ε〉n

2. 〈ε〉n

3. 〈1
2
− ε, 3ε〉n−1

Both algorithms,LF andOPT, usen bins for the first2n items, putting one item of size1
2

and one
item of sizeε in each bin.

LF puts all items from phase two in the last bin. It then packs thelarge items of phase three in the
first n − 1 bins and the small items of phase three in the last bin, using only n bins. OPT, on the
other hand, distributes the items of phase two evenly in then open bins, and is able to open a new
bin for each of then− 1 pairs of items in phase three.

This gives a ratio of2n−1
n

which is arbitrarily close to 2 forn arbitrarily large.

Investigation of Worst-Fit seems to indicate that it works very well in comparison with the other
algorithms studied here. However, the gap between the lowerbound of3

2
and the upper bound of

2 remains. Based on our investigation, we conjecture the following:

Conjecture 12. For the On-Line Maximum Resource Bin Packing Problem, the competitive ratio
of WF is 3

2
.

5 On-Line Maximum Resource Dual Bin Packing

For this problem, there are exactlyn bins. An item cannot be rejected if it fits in some bin,
but there are no constraints as to which bins the algorithm may use, except that no bin may be
filled to more than1. As mentioned in the introduction we consider two objectivefunctions: the
number of accepted items and the total size of the accepted items. For both objective functions, no
deterministic algorithms is competitive if no bounds are put on the item sizes.

Theorem 13. For the On-Line Maximum Resource Dual Bin Packing Problem with accepted total
size as cost function, no deterministic algorithm is competitive in general.

Proof. Let n ≥ 2 be the number of available bins, and letALG be any deterministic algorithm.
The input sequence is constructed in up ton rounds. In roundi, for 1 ≤ i ≤ n− 1, n items of size
ε are given, for some smallε > 0. If, after theith round,ALG has one or more bins with fewer
thani items, then an item of size1− ε(i− 1) is given.OPT distributes alli ·n ε-items withi items
in each bin, and can thus reject this large item. The performance ratio is then

ALG(I)
OPT(I)

=
inε+ (1− ε(i− 1))

inε
=

in− i+ 1 + 1
ε

in

14



For ε arbitrarily small, this ratio can be arbitrarily large.

If, after n − 1 rounds,ALG hasn − 1 items in each of itsn bins, we give an item of sizenε, and
thenn − 1 items of size1 − ε(n − 1). ALG has to accept all these items.OPT arranges the first
items, including the item of sizenε, such that all bins are filled tonε. It can then reject all the large
items. This gives a performance ratio of

ALG(I)
OPT(I)

=
n2ε+ (n− 1)(1− ε(n− 1))

n2ε
=

2n− 1 + (n− 1)1
ε

n2

This can again be arbitrarily large forε arbitrarily small.

We note that the situation for the parameterized problem fork > 1 is very different from the
situation for the general problem. For everyk > 1, it is not hard to show that any algorithm has
competitive ratio of at mostk/(k − 1). The reason for this is that ifOPT rejected any item at all,
then its bins are full up to at least1− 1/k.

The following lower bound tends to1 + 1
e(k−1)

asn tends to infinity and is at least1 + 1
3(k−1)

for
anyn ≥ 2.

Theorem 14. Consider the On-Line Parameterized Maximum Resource Dual Bin Packing Problem
with accepted total size as cost function. Fork ≥ 2, any deterministic algorithm ALG for this
problem has

CALG(k) ≥ 1 +
m

n(k − 1)
, wherem = max

{

j

∣

∣

∣

∣

∣

n
∑

i=j

1

i
> 1

}

∈
{⌊n

e

⌋

,
⌈n

e

⌉}

.

Proof. Let n be the number of bins and letε > 0 be a very small constant. Letm be the largest
number1 ≤ m < n such that

∑n

i=m
1
i
> 1. Since1/x is a monotonically decreasing function for

x > 0, we get a lower bound of
⌊

n
e

⌋

onm:

n
∑

i=⌊n

e
⌋

1

i
>

∫ n+1

⌊n

e
⌋

1

x
dx = [ln x]n+1

⌊n

e
⌋ = ln

n+ 1
⌊

n
e

⌋ > ln
n+ 1

n
e

= ln
n+ 1

n
+ 1 > 1.

For the upper bound,m can be at most
⌈

n
e

⌉

, since

n
∑

i=⌈n

e
⌉+1

1

i
<

∫ n

⌈n

e
⌉

1

x
dx = [ln x]n⌈n

e
⌉ = ln

n
⌈

n
e

⌉ < ln
n
n
e

= 1.

Hence, depending on the exact value ofn, m is either
⌊

n
e

⌋

or
⌈

n
e

⌉

.

The initial input isn! items of sizeε. We first prove that, for any packing of these items, there
exists an integeri, m ≤ i ≤ n, such that at leasti bins receive strictly less than n!

n+m−i
items.

Assume for the purpose of contradiction that this is not the case. Then, at least one bin has at least
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n!
m

small items, and for eachi = n−1, n−2, . . . ,m, there is at least one additional bin that receives
at least n!

n+m−i
items. Since the total number of items isn!, we get that

∑n

i=m
n!

n+m−i
≤ n!, which

is equivalent to
∑n

i=m
1
i
≤ 1. By the definition ofm, this cannot be the case.

Now, pick ani, m ≤ i ≤ n, such that at leasti bins receive strictly less than n!
n+m−i

items inALG’s
packing. Give

1.

〈

n!

n+m− i
ε

〉i−m

2.

〈

1

k

〉n(k−1)

3.

〈

1

k
−

n!− 1

n+m− i
ε

〉m

After packing the firsti−m of these items,ALGstill has at leastm bins filled to strictly less than
n!

n+m−i
ε. Let r be the number ofALG’s bins which are completely empty. Since all bins are less

than 1
k

full, there is room for exactlyn(k− 1)+ r items of size1
k

and at leastmax{m− r, 0} items
of size 1

k
− n!−1

n+m−i
ε. Thus,ALG is able to pack the remaining items as well, giving a total size of

n!ε+ (i−m)
n!

n+m− i
ε+

n(k − 1) +m

k
−

n!− 1

n+m− i
mε.

Before the arrival of the size1
k

items,OPT can pack the items from phase one in one bin each and
distribute the initialn! items in the remaining bins to fill all bins up to exactlyn!

n+m−i
ε. Each bin

getsk − 1 items of size1
k
, and no further items can be packed. The total size packed byOPT is

n!ε+ (i−m)
n!

n+m− i
ε+

n(k − 1)

k
.

As ε decreases, the ratio converges to1 + m
n(k−1)

.

The lowest possible value ofm
n

is 1
3

which is obtained whenn equals3, 6 or 9.

For the case where the objective function is the number of accepted items, the situation is even
worse.

Theorem 15. For the On-Line Parameterized Maximum Resource Dual Bin Packing Problem with
the number of accepted items as cost function, no deterministic algorithm is competitive, for any
k.

Proof. Let n ≥ 2 be the number of bins available, and letALGbe any deterministic algorithm.
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The input sequence begins with2kn − 2 items of size 1
2k

. ALG fills all but at most two bins
completely, and the remaining two bins are either both filledto 1− 1

2k
, or one is filled completely

and the other to1− 1
k
.

In the first case, the sequence continues with one item of size1
k

and
⌊

1
kε

⌋

items of sizeε. ALG
rejects the first of these and accepts all of the small ones.OPT, on the other hand, arranges the
items of size 1

2k
, so that all but one bin is full, the item of size1

k
fits in that last bin, and all the

small items are rejected.

In the second case, the sequence continues with one item of size 1
2k

+ ε, two items of size1
2k

, and
⌊

1
2kε

⌋

− 1 items of sizeε. ALGaccepts the first of these items, rejects the next two, and accepts all
the small items.OPT, on the other hand, rejects the first of these items, accepts the next two, and
rejects all the small items.

By makingε arbitrarily small, the number of items accepted byALGcan be made arbitrarily large,
while the number of items accepted byOPT is either2nk − 1 or 2nk.

6 Concluding Remarks

The most interesting open problem is to prove that the off-line maximum resource bin packing
problem is NP-hard (or to find a polynomial time algorithm forit).

For the off-line version of the problem, we have investigated First-Fit-Decreasing, which is worst
possible, and First-Fit-Increasing, which performs better and obtains an approximation ratio of
6
5
. It would be interesting to establish a general lower bound on the problem, and, if it is lower

than 6
5
, to determine the optimal algorithm for the problem. Does there exist a polynomial time

approximation scheme for the off-line version?

For the on-line version, we have considered the two standardbin packing problems from the lit-
erature. For dual bin packing, no algorithm is competitive in general, independent of whether the
cost measure is the total size or the total number of accepteditems. With the total accepted size
as cost function, the situation is completely different forthe parameterized version; fork ≥ 2, any
algorithm has a parameterized competitive ratio between1 + 1

k−1
and about1 + 1

e(k−1)
.

For the classic variant of on-line bin packing, we have established general upper and lower bounds
and proved that First-Fit, Best-Fit, and Last-Fit perform worst possible. The behavior of Worst-Fit
seems very promising, but we leave it as an open problem to determine its competitive ratio.
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