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Abstract The bin covering problem asks for covering a maximum number of
bins with an online sequence of n items of different sizes in the range (0, 1]; a
bin is said to be covered if it receives items of total size at least 1. We study
this problem in the advice setting and provide asymptotically tight bounds of
Θ(n logOpt) on the size of advice required to achieve optimal solutions.

The first, second, and fourth authors were supported in part by the Danish Council for
Independent Research, Natural Sciences, grant DFF-1323-00247. A preliminary version of
this paper appeared in the 16th International Algorithms and Data Structures Symposium
(WADS), volume 11646 of Lecture Notes in Computer Science, Springer 2019.

∗ Corresponding author. E-mail: kslarsen@imada.sdu.dk

J. Boyar
University of Southern Denmark, Odense
Department of Mathematics and Computer Science, Campusvej 55, 5230 Odense M, Den-
mark
E-mail: joan@imada.sdu.dk

L. M. Favrholdt
University of Southern Denmark, Odense
Department of Mathematics and Computer Science, Campusvej 55, 5230 Odense M, Den-
mark
E-mail: lenem@imada.sdu.dk

S. Kamali
University of Manitoba
Department of Computer Science, E2-EITC, Winnipeg, Manitoba R3T 2N2, Canada
E-mail: shahin.kamali@umanitoba.ca

K. S. Larsen
University of Southern Denmark, Odense
Department of Mathematics and Computer Science, Campusvej 55, 5230 Odense M, Den-
mark
Tel.: +45 6550 2328
E-mail: kslarsen@imada.sdu.dk
ORCID: 0000-0003-0560-3794



2 Boyar, Favrholdt, Kamali, and Larsen

Moreover, we show that any algorithm with advice of size o(log log n) has
a competitive ratio of at most 0.5. In other words, advice of size o(log log n)
is useless for improving the competitive ratio of 0.5, attainable by an online
algorithm without advice. This result highlights a difference between the bin
covering and the bin packing problems in the advice model: for the bin packing
problem, there are several algorithms with advice of constant size that outper-
form online algorithms without advice. Furthermore, we show that advice of
size O(log log n) is sufficient to achieve an asymptotic competitive ratio of 0.53̄
which is strictly better than the best ratio 0.5 attainable by purely online algo-
rithms. The technicalities involved in introducing and analyzing this algorithm
are quite different from the existing results for the bin packing problem and
confirm the different nature of these two problems.

Finally, we show that a linear number of advice bits is necessary to achieve
any competitive ratio better than 15/16 for the online bin covering problem.

Keywords Online Algorithms · Bin Covering · Advice Complexity ·
Competitive Analysis.

1 Introduction

In the bin covering problem [3], the input is a multi-set of items of different
sizes in the range (0, 1] which need to be placed into a set of bins. A bin is said
to be covered if the total size of items in it is at least 1. The goal of the bin
covering problem is to place items into bins so that a maximum number of bins
is covered. In the online setting, items form a sequence which is revealed in a
piece-by-piece manner; that is, at each given time, one item of the sequence is
revealed and an online algorithm has to place the item into a bin without any
information about the forthcoming items. The decisions of the algorithm are
irrevocable.

Bin covering is closely related to the classic bin packing problem and is
sometimes called the dual bin packing problem1. The input to both problems
is the same. In the bin packing problem, however, the goal is to place items
into a minimum number of bins so that the total size of items in each bin
is at most 1. Online algorithms for bin packing can naturally be extended to
bin covering. For example, Next-Fit is a bin packing algorithm which keeps
one “open” bin at any time: To place an incoming item x, if the size of x is
smaller than the remaining capacity of the open bin, x is placed in the open
bin; otherwise, the bin is closed (never used again) and a new bin is opened.
Dual-Next-Fit [3] is a bin covering algorithm that behaves similarly, except
that it closes the bin when the total size of items in it becomes at least 1.

1 There is another problem, also sometimes referred to as “dual bin packing”, which asks
for maximizing the number of items packed into a fixed number of bins; for the advice
complexity of that dual bin packing problem, see [22,10].
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1.1 Offline algorithms

In the offline setting, the bin packing and bin covering problems are NP-hard.
There is an asymptotic fully polynomial-time approximation scheme (AFP-
TAS) for bin covering [18]. There are also bin packing algorithms which open
Opt+o(Opt) bins [19,24,16], where Opt is the number of bins in the optimal
packing. The additive term was improved in [24] and further, to O(logOpt),
in [16].

1.2 Online algorithms

Online algorithms are often compared under the framework of competitive
analysis. Roughly speaking, the competitive ratio of a bin covering (respec-
tively bin packing) algorithm is the minimum (respectively maximum) ratio
between the number of bins covered (respectively opened) by the algorithm
and that of an optimal offline algorithm on the same input.

Despite similarities between bin covering and bin packing, the status of
these problems are different in the online setting. In the case of bin covering,
it is known that no online algorithm can achieve a competitive ratio better
than 0.5 [13], while bin covering algorithms such as Dual-Next-Fit [3] have
the best possible competitive ratio of 0.5. Hence, we have a clear picture of
the complexity of deterministic bin covering under competitive analysis. The
situation is more complicated for the bin packing problem. It is known that
no deterministic algorithm can achieve a competitive ratio of 1.54278 [5] while
the best existing deterministic algorithm has a competitive ratio of 1.5783 [4].
Note there is a gap between the best known upper and lower bounds.

1.3 Online algorithms with advice

Advice complexity is a formalized way of measuring how much knowledge
of the future is required for an online algorithm to obtain a certain level
of performance, as measured by the competitive ratio. When such advice is
available, algorithms with advice could lead to semi-online algorithms. Unlike
related approaches such as “lookahead” [15] (in which some forthcoming items
are revealed to the algorithm) and “closed bin packing” [2] (where the length
of the input is revealed), any information can be encoded and sent to the
algorithm under the advice setting. This generality means that lower bound
results under the advice model also imply strong lower bound results on semi-
online algorithms, where one can infer impossibility results simply from the
length of an encoding of the information a semi-online algorithm is provided
with. Advice complexity is also closely related to randomization; complexity
bounds from advice complexity can be transferred to the randomization case
and vice versa [8,6,21,14].

We use the advice on tape model defined in [17,9]: The advice is generated
by a benevolent oracle with unlimited computational power. The advice is
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written on a tape and the algorithm knows its meaning. This general approach
has been studied for many problems (we refer the reader to a recent survey
on advice complexity of online problems [11]). In particular, bin packing has
been studied under the advice model [12,23,1].

For bin covering with advice, the decision of where to pack the ith item is
based on the content of the advice tape and the sizes of the first i items. For
any bin covering algorithm, A, and any input sequence, σ, A(σ) and Opt(σ)
denote the number of bins covered by A and an optimal offline algorithm, Opt,
respectively, when given the input sequence σ. A bin covering algorithm, A,
is c-competitive with advice complexity s(n) if there exists a constant b such
that, for all n and for all input sequences σ of length at most n, there exists
some advice Φ such that A(σ) ≥ c ·Opt(σ)− b and at most s(n) bits of Φ are
accessed by the algorithm. If c = 1 and b = 0, the algorithm is optimal. For a
given algorithm, A, with a given advice complexity, s(n), the competitive ratio
is sup{c | A is c-competitive}. Thus, competitive ratios are fractions, with 1
being the best possible. For the asymptotic competitive ratio, the b term is
allowed to be non-constant, as long as it is o(Opt). Thus, the asymptotic
competitive ratio of A is lim supOpt(σ)→∞{A(σ)/Opt(σ)}.

Note that bin covering is a maximization problem. For minimization prob-
lems, such as bin packing, the competitive ratio is defined analogously, except
that the inequality is A(σ) ≤ c ·Opt(σ) + b. Similarly, the competitive ratio
is the infimum over all c such that algorithm is c-competitive, giving values at
least 1.

For bin packing, it is known that Θ(n log(Opt)) advice bits are necessary
and sufficient to produce optimal solutions [12], but a constant number of
advice bits are sufficient to obtain a competitive ratio close to 1.47, beating
the best possible online algorithm without advice [1]. Furthermore, 2n+ o(n)
advice bits suffice to get arbitrarily close to a competitive ratio of 4/3 [12], and
getting below 1.17 requires at least a linear number of bits [21]. In [23], (1+ε)-
competitive online algorithms using O(n · 1

ε log 1
ε ) advice bits are designed

based on round and group techniques known from offline algorithms.

1.4 Contributions

In this article, we provide the first results with respect to the advice complexity
of the bin covering problem.

To obtain an optimal result, advice essentially corresponding to an encod-
ing of an entire optimal solution is necessary and sufficient. Not surprisingly,
this follows from a similar proof for bin packing, since for both problems, bins
filled to size one in an optimal solution are at the core of the proof.

However, unlike the bin packing problem, advice of constant size cannot
improve the competitive ratio of algorithms. We establish this result by show-
ing that any algorithm with advice of size o(log log n) has a competitive ratio
of at most 0.5, which is the optimal competitive ratio of online algorithms
without advice.
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We prove a tight result that advice of size O(log log n) suffices to achieve a
competitive ratio arbitrarily close to 0.53̄. Some techniques that we develop for
this result are quite different from the existing results for bin packing and are
likely helpful for future analysis of bin covering with advice. The idea is to let
the advice communicate the number of bins of certain “types” in an optimal
packing. However, to get down to O(log log n) bits of advice, only approximate
values are given. This idea is similar to that for bin packing in [1], except that
in [1] only a constant number of bits are used, approximating the ratio of the
number of bins in two different sets. Another difference between our algorithm
and previous solutions for bin packing is that, we employ the “dual-worst-fit”
scheme for placing certain items for bin covering. In contrast, the worst-fit
algorithm for bin packing has not been used previously and does not seem to
be helpful.

Finally, using a reduction from the binary string guessing problem [7], we
show that advice of linear size is necessary to achieve any competitive ratio
larger than 15/16. This is similar to, but more intricate, than the corresponding
result for bin packing.

1.5 Techniques

We provide an intuitive explanation of the difference between bin packing and
bin covering under the advice model, and use this explanation to describe our
techniques in designing algorithms and impossibility results for the bin cover-
ing problem with advice. Online bin packing is relatively “easy” when items
are relatively large (close to 1) or small (close to 0). Online algorithms can
place large and small items separately, and this gives relatively good compet-
itive ratios because an optimal algorithm has to open a bin for every large
item and the online algorithm can fill any bin almost completely with small
items. In contrast, in the bin packing problem, the “tricky” items are those
that are close to 1/2 (a bit more or less than 1/2), and other items can be
handled without wasting too much space. For inputs formed by the tricky
items, a bin packing algorithm acts like a “matching algorithm”, where items
smaller than 1/2 can match with themselves or some items larger than 1/2.
Advice can help by encoding the number of items slightly larger than 1/2.
This is consistent with reserving some space for “critical” items, which is the
main technique used in some results for bin packing [12,1]. The resulting bins
reflect the matching of large and small items or small items among them-
selves. It turns out that if we know the ratio between these two “types” of
bins (approximated by a constant number of bits), we can do better than any
deterministic online algorithm (see [1] for details). For bin covering, however,
the tricky items are those that are either very large (close to 1) or very small
(close to 0). Inputs formed by such tricky items are used in [13] to derive a
lower bound on the competitive ratio of purely online algorithms. We also use
them in Section 3 to derive an impossibility result when the advice size is
o(log log n). Similarly to bin packing, for inputs formed by tricky items, a bin
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covering algorithm becomes a “matching algorithm”. The matching process
is albeit a bit harder than it is for bin packing. This is because, unlike bin
packing where matching two large items is not possible (as they do not fit in
the bin), in bin covering, matching two large items is possible and sometimes
necessary. To be a bit more precise, in bin covering, we cannot afford having a
bin with an unmatched large item; such a bin will be almost full, but not cov-
ered, which implies that the item placed in the bin is wasted. When designing
algorithms for bin covering in Section 4, we exploit advice in order to form
packings that ensure that large items are always matched with other items,
preferably with a set of small items, and if not possible with other large items.
This ensures that items are not wasted in our packings, that is, all bins that
receive items will be covered (except potentially o(Opt) of them). This family
of packings is formally defined in Section 4 as “(α, ε)-desirable packings”, in
which large items are matched with each other, except for a fraction α of them
that are placed in bins that are covered by small items. The value of ε is a
parameter determined by the accuracy of the encodings of the “approximate
values” of a few numbers passed to the algorithm in the form of advice.

In Section 5, we use a reduction from the binary separation problem (closely
related to the binary string guessing problem) to derive an impossibility result
when the advice size is sub-linear. While reductions of this form have been
used for the bin packing problem, there are major differences between these
reductions. These differences are again rooted in the fact that hard sequences
for bin covering are formed by items that are close to 0 or 1, and that there
are more possibilities for placing items in a bin covering instance compared to
bin packing.

Throughout the paper, we let the level of a bin denote the total size of
items packed in that bin at the current time.

2 Optimal covering and advice

It is not hard to see that advice of size O(n log(Opt(σ))) is sufficient to achieve
an optimal covering for an input σ of length n; note that Opt(σ) denotes the
number of bins in an optimal covering of σ. Provided with O(log(Opt(σ))) bits
of advice for each item, the offline oracle can indicate in which bin the item is
placed in the optimal packing. Provided with this advice, the online algorithm
just needs to pack each item in the bin indicated by the advice. Clearly, the
size of the advice is O(n log(Opt(σ))) and the outcome is an optimal packing.
Note that it is always assumed that the oracle that generates the advice has
unbounded computational power. However, if the time complexity of the oracle
is a concern, we can use the AFPTAS of [18] to generate an almost-optimal
packing and encode it in the advice. Similarly, if the input is assumed to
have only m distinct known sizes, one can encode the entire request sequence,
specifying for each distinct size how many of that size occur in the sequence.
This only requires O(m log(n)) bits of advice. The following theorem shows
that the above naive solutions are asymptotically tight.
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Theorem 1 For online bin covering on sequences σ of length n, advice of
size Θ(n logOpt(σ)) is required and sufficient to achieve an optimal solution,
assuming 2Opt(σ) ≤ (1 − ε)n for some positive value of ε. When the input
is formed by n items with m ∈ o(n) distinct, known item sizes, advice of size
Θ(m log n) is required and sufficient to achieve an optimal solution.

Proof The lower bounds follow immediately from the corresponding results
for bin packing [12, Theorems 1, 3]. Since the optimal result in those proofs
have all bins filled to level 1, any non-optimal bin packing would also lead to
a non-optimal bin covering. ut

3 Advice of size o(log log n) is not helpful

In this section, we show that advice of size o(log log n) does not help for improv-
ing the competitive ratio of bin covering algorithms. This result is in contrast
to bin packing where advice of constant size can improve the competitive ra-
tio. Our lower bound sequence is similar to the one in [13], where the authors
proved a lower bound on the competitive ratio of purely online algorithms.

Theorem 2 There is no algorithm with advice of size o(log log n) and com-
petitive ratio better than 1/2.

Proof Consider a family of sequences formed as follows:

σj = 〈ε, ε, . . . , ε︸ ︷︷ ︸
n items

, 1− jε, 1− jε, . . . , 1− jε︸ ︷︷ ︸
bn/jc items

〉

Here, j ranges from 1 through b
√
nc, giving rise to b

√
nc sequences in the

family. All sequences start with the same prefix of n items of size ε. We assume
that ε < 1

2n to ensure that, even if all these items are placed in the same bin,
the level of that bin is still less than 1/2. Note that the suffix, formed by items
of size 1− jε, has length O(n), so the length of any of the sequences is Θ(n).

Clearly, for packing σj , an optimal algorithm places j items of size ε in
each bin and covers bn/jc bins. So we have Opt(σj) = bn/jc.

The proof is by contradiction, so assume there is an algorithm, A, using
o(log log n) advice bits and having competitive ratio 1/2+µ for some constant
0 < µ ≤ 1

2 . Then, there exists a fixed constant d such that for any sequence
σj , we have

A(σj) ≥ (1/2 + µ)Opt(σj)− d =
1

2

⌊
n

j

⌋
+ µ

⌊
n

j

⌋
− d (1)

We say two sequences belong to the same sub-family if they receive the
same advice string. Since the advice has size o(log log n), there are o(log n)
sub-families. Let σa1 , . . . , σaw be the sequences in one sub-family. Since the
advice and the first n items (of size ε) are the same for any two members
of this sub-family, A will place these n items identically. Let mi denote the
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number of bins receiving at least i items in such a placement. So, we have∑n
i=1mi = n (a bin with x items is counted x times, since it receives at least

one item, at least two items, etc.). Moreover, for any σj , we have

A(σj) ≤ mj + (bn/jc −mj)/2 =
1

2

⌊
n

j

⌋
+
mj

2
(2)

This follows since any bin with at least j items of size ε can be covered using
only one item of size 1− jε, while the other bins require two such items. From

Equations (1) and (2), we get µ
⌊
n
j

⌋
≤ mj

2 +d. Summing over j ∈ {a1, . . . , aw},
we get that

µn

(
1

a1
+

1

a2
+ . . .+

1

aw

)
− µw ≤ 1

2
(ma1 +ma2 + . . .+maw) + wd,

where µw is subtracted to compensate for removing the floor. Since 1
2 (ma1 +

ma2 + . . .+maw) + (d+ µ)w ≤ 1
2 ·

n∑
i=1

mi + (d+ 1
2 )n = (d+ 1)n, we have

1

a1
+

1

a2
+ . . .+

1

aw
∈ O(1)

Summing the left-hand side over all families, we include every sequence and

therefore every fraction, 1
i , once and obtain Σ

b
√
nc

i=1
1
i . Since there are o(log n)

sub-families, and the contribution to the sum of fractions from each sub-family

has been proven constant, it follows that Σ
b
√
nc

i=1
1
i ∈ o(log n). This is a contra-

diction, since the Harmonic number Σ
b
√
nc

i=1
1
i ∈ Θ(log

√
n) = Θ(log n).

Thus, our initial assumption is wrong and with advice of size o(log log n),
no algorithm with competitive ratio strictly better than 1/2 can exist.

For clarity in the exposition, we have ignored the issue of the sequences in
the family having different lengths, all of which are larger than n. However, all
sequences have length at most 2n, so we can take that to be our n, and pad all
sequences with items small enough that even the sum of them cannot fill up
the missing space in any bin. For the asymptotic result proven here, changing
n by a factor of at most 2 is immaterial. ut

4 An algorithm with advice of size O(log log n)

In this section, we show that advice of size O(log log n) is sufficient to achieve
an asymptotic competitive ratio of 8/15 = 0.53̄.

Throughout this section, we call an item small if it has size less than 1/2
and large otherwise.

Consider a packing of the input sequence σ. We partition the bins in this
packing into three groups. A large-small (LS) bin includes one large item
and some small items, a large-large (LL) bin includes only two large items,
and a small (S) bin includes only small items. We use mS, mLS, and mLL,
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respectively, to denote the number of S-bins, LS-bins, and LL-bins in the
optimal packing. For mLS ≥ 1, we let β ≥ 1 satisfy mLS + mLL = βmLS. See
Table 1 for a summary of notation used in this section.

4.1 A simple algorithm for the case mLS = 0 or β ≥ 15/14

The following lemma shows that sequences, where there are not too many LS-
bins compared to LL-bins in an optimal packing, are “easy” instances. More
specifically, when there are at most 14 times as many LS-bins as LL-bins, there
is a simple 8/15-competitive algorithm.

Lemma 1 When mLS = 0 or β ≥ 15/14, there is an online bin covering
algorithm with competitive ratio at least 8/15.

Proof Consider a simple algorithm, A, that places large and small items sep-
arately. Each pair of large items cover one bin and small items are placed
using the Dual-Next-Fit strategy, that is, they are placed in the same bin
until the bin is covered (and then a new bin is started). Let S denote the
total size of small items. Note that the number of large items is mLS + 2mLL.

Table 1: Notation used in Section 4

Notation Meaning

n The length of the input.

mLS The number of LS-bins in the optimal packing.

mLL The number of LL-bins in the optimal packing.

mS The number of S-bins in the optimal packing.

β
The value of mLS+mLL

mLS
. The algorithm behaves differently when β ≥

15/14 compared to when β < 15/14.

α
A parameter of the algorithm when β < 15/14. Approximately bαmLSc
of covered bins include exactly one large item.

ε ε ∈ O
(

1
logn

)
.

nG nG = bαmLS/3c is the number of good items.

d d = 1− sG, where sG is the size of the smallest good item.

sB The size of the nB’th smallest black item.

mR The number of reserved bins.

mB Among the reserved bins, mB bins are black bins.

mW Among the reserved bins, mW bins are white bins.
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The number of bins covered by A is at least b(mLS + 2mLL)/2c + b2S/3c ≥
(mLS + 2mLL)/2 + 2S/3 − 2. The number of bins covered by Opt is at most
mLS +mLL + bSc. Thus, for any input sequence, σ,

A(σ) ≥ (mLS + 2mLL)/2 + 2S/3

mLS +mLL + S
·Opt(σ)− 2

For mLS = 0, this proves a ratio of at least 2/3 which is larger than 8/15. For
β ≥ 15/14, this gives a competitive ratio of at least min{2/3, 2β−12β }, since

(mLS + 2mLL)/2

mLS +mLL
=

2mLS + 2mLL −mLS

2mLS + 2mLL
=

2mLS+mLL

mLS
− 1

2mLS+mLL

mLS

=
2β − 1

2β
.

For β ≥ 15/14, (2β − 1)/(2β) ≥ 8/15. This proves the lemma. ut

4.2 A more complicated algorithm for the case mLS ≥ 1 and β < 15/14

In what follows, we define (α, ε)-desirable packings, which act as reference
packings for our algorithm. Here α and ε are parameters of the algorithm that
we will introduce later. Note that in an optimal packing, there are mLS bins
covered by one large item and some small items. Consider a covering in which
large and small items are placed in separate bins. Clearly, there are 0 bins
that are covered by one large and some small items and, in the worst case, the
level of all bins covered by small bins is almost 1.5 (when all small items have
size a bit less than 0.5). Intuitively speaking, an (α, ε)-desirable packing is an
intermediate solution between this packing and the optimal packing, in which
there are almost αmLS bins covered by one large item and some small items.

For the following definition, it may be helpful to confer with Figure 1.

Definition 1 A packing is (α, ε)-desirable, where α is a real number in the
range (0, 1] and ε is a (small) positive real, if and only if all the following hold:

I The packing has at least bαmLSc LS-bins. All LS-bins, except possibly
O(εmLS) of them, are covered.

II The large items that are not packed in LS-bins appear in pairs, with each
pair covering one bin (except one item when there are an odd number of
such large items).

III The packing has at least 2mS

3 −O(εmLS) covered S-bins.

Lemma 2 For any input sequence, σ, the number of bins covered in an (α, ε)-
desirable packing is at least min{α+2β−1

2β , 23} ·Opt(σ)−O(εmLS).

Proof The number of bins covered in the optimal packing is Opt(σ) = mLL +
mLS +mS = βmLS +mS.

Now consider the (α, ε)-desirable packing and let xLS be the number of LS-
bins in the packing. Then by Definition 1, xLS ≥ bαmLSc, and the number of
covered LS-bins is xLS−O(εmLS). The number of covered LL-bins is b(2mLL+



Online Bin Covering with Advice 11

0.90

0.11

0.80

0.22

0.60

0.40

0.55

0.30

0.15

0.53

0.51

0.52

0.51

0.45

0.35

0.15

0.10

0.45

0.25

0.30

0.41

0.42

0.20

LS-bins LL-bins S-bins

0.20

0.25

0.10

0.90

0.30

0.15

0.11

0.80

0.30

0.15

0.51

0.53

0.52

0.60

0.51

0.55

0.40

0.45

0.45

0.42

0.35

0.22

0.41

Fig. 1: (top) an optimal packing with mLS = 4,mLL = 2, and mS = 3;
(bottom) an (α, ε)-desirable packing with α = 1/2 and ε = 1/64.

mLS − xLS)/2c = b((2β − 1)mLS − xLS)/2c. By Definition 1, the number of
covered S-bins is at least 2mS

3 −O(εmLS). Hence, the number of bins covered
in the (α, ε)-desirable packing of σ will be at least

xLS −O(εmLS) +

⌊
(2β − 1)mLS − xLS

2

⌋
+

2mS

3
−O(εmLS)

=
1

2
xLS +

(2β − 1)mLS

2
+

2mS

3
−O(εmLS)

≥ αmLS

2
+

(2β − 1)mLS

2
+

2mS

3
−O(εmLS)

=
αmLS/2 + (2β − 1)mLS/2 + 2mS/3

βmLS +mS
·Opt(σ)−O(εmLS)

≥ min

{
α+ 2β − 1

2β
,

2

3

}
·Opt(σ)−O(εmLS).
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In the first equality, we simply remove terms that are anyway absorbed
in O(εmLS); similar for the first inequality, using the bound xLS ≥ bαmLSc,
where the constant coming from lifting the floor is also absorbed. In the last
equality, we have gathered the first three terms and multiplied with the iden-
tity Opt(σ)/(βmLS + mS). Finally, for the last inequality, we have used the
arithmetic inequality, a+b

c+d ≥ min(ac ,
b
d ), to collect the mLS and mS terms, re-

spectively. ut

In the remainder of this section, we describe an algorithm that achieves an
(α, ε)-desirable packing for certain values of α and ε. Here, ε is a parameter
determined by the accuracy of the encodings of approximate values of a few
numbers passed to the algorithm. Before describing these numbers, we explain
how the approximate encodings work.

Our algorithm requires approximate encoding of integers (associated with
the number of certain bins), as well as positive values smaller than 1 (associated
with size of items or levels of bins). Given a positive integer x, we can write
the length of the binary encoding of x in O(log log x) bits, using self-delimited
encoding as in [20]. The approximate value of x will be represented by the
binary encoding of the length of x, plus the k most significant bits of x after
the high-order 1, with k = dlog log xe. Thus we use O(log log n) bits in total
for encoding numbers no larger than n. Setting the unknown lower order bits
to zero gives an approximation to x which we denote by x−. We can bound
x− as follows: If x− = y · 2` for some y represented by k + 1 bits, where the
high-order bit is a one, then 2k ≤ y < 2k+1. Given x−, the largest x could be
is y · 2` + (2` − 1). Thus, (1− 1

2k
)x < x− ≤ x. Similarly, setting the unknown

lower order bits to one gives an approximation to x which we denote by x+.
We can bound x+ as follows: x ≤ x+ < (1 + 1

2k
)x. For a real-valued, positive

x < 1, we consider its binary representation as the sum of powers of 1/2. To
represent x−, we write the first k = O(log log n) powers of 1/2, ignoring any
unknown remaining bits. If these unknown bits are all 1, we get x+, the value
of which is no more than x+ 1

2k
.

We will let ε = 1
2k
≤ 1

logn .

In the remaining more technical part of the section, it may be beneficial
to consider that if we had had O(log n) bits of advice instead of O(log log n),
many arguments would be simplified, and it could be helpful on a first reading
to ignore multiplicative terms such as 1 − ε that are there because we know
only approximate as opposed to exact values of the parameters we receive
information about in the advice.

4.2.1 Outlining the algorithm

We call the nG = bmLS/3c largest items in the input sequence good items and
let d = 1 − sG, where sG denotes the size of the smallest good item. Thus,
packing a good item in a bin with level at least d ensures that the bin is
covered.
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Our algorithm aims to place a subset of small items into nG reserved bins in
a way that the level of each reserved bin is at least d, while the remaining small
items will cover almost 2mS/3 separate bins. As we will describe later, some
of the reserved bins will receive an additional good item and hence become
covered.

At first glance, placing small items to provide the above guarantee does
not seem too hard: an optimal packing covers mS small bins while we need to
cover roughly 2mS/3 bins, and the remaining small items have total size at
least 2mLS/3 × d (because 2/3 of Opt’s LS-bins have large items of size at
most 1−d) while we want to cover a level nG×d ≈ (mLS/3)×d (in a sense, the
total volume of available small items is at least twice the required volume for
achieving the desired level). Ideally, if we can balance the level of small items
in the reserved bins, then all levels are close to the average level (roughly
2d). This can be done via the Dual-Worst-Fit algorithm that places each item
in the bin that currently has the minimum level among a predefined number
of bins (here nG, the number of reserved bins). Unfortunately however, the
discrepancy between the sizes of the small items can create situations where
simply using Dual-Worst-Fit is not sufficient to achieve the desired level for all
reserved bins. Consequently, the algorithm is more delicate as we will describe
in what follows.

The algorithm receives the approximation d+ as advice. Small items of size
at least d+ are called black items, and items smaller than d+ are called white
items. Let mLSB denote the number of LS-bins in the optimal packing that
contain a black item.

The following offline scheme illustrates the idea behind our algorithm. See
Figure 2 for an illustration.

– Open nG bins called reserved bins.
– Place the nB = min{mLSB, nG} smallest black items in nB of these bins,

one item per bin. These bins are called black bins.
– Place white items of total size at least d, but less than d + d+, in each of

the remaining mW = nG − nB reserved bins. These bins are called white
bins. This is done using Dual-Worst-Fit.

– The remaining small items are packed in S-bins using Dual-Next-Fit.
– Place a large item in each of the reserved bins, ensuring that at least αmLS

of them are good items. Place an additional large item in each reserved
bin without a good item. Place the remaining large items pairwise in new
bins.

The above algorithm is strictly better than 0.5-competitive. Here is an
informal argument for this claim. The total size of small items placed in S-
bins cannot be much smaller than the total size of small items placed in S-bins
in an optimal packing. This is due to the following:

– The smallest black items are placed in the reserved bins; the total size of
these items is no more than the total size of black items placed with a good
item in the LS-bins of Opt.
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Fig. 2: (top) An optimal packing with 12 LS-bins (mLS = 12 and hence nG =
12/3 = 4). The four good items are colored dark gray. The smallest good item
has size 0.77 and hence d = 1 − 0.77 = 0.23. The approximate value of d is
encoded in 6 bits, i.e., d+ = 1/8 + 1/16 + 1/32 + 1/64 = 0.234375. Black items
are those no smaller than 0.234375 and they are colored dark green (they are
0.24, 0.25, and 0.26). There are mLSB = 2 black items in LS-bins. (bottom)
A packing that covers more bins than half of the optimal packing. There are
nG = 4 reserved bins. We have nB = min{mLSB = 2, nG = 4} = 2. So, the
two smallest black items (0.24 and 0.25) are placed in the reserved bins (black
bins). The other 2 reserved bins (white bins) are covered with small items up
to an approximate level d using the Dual-Worst-Fit algorithm. The remaining
small items are placed using Dual-Next-Fit in separate S-bins. Assuming that
α = 1/6, there are αmLS = 2 reserved bins that receive good items. The
remaining large items are all paired in their bins.

– Each white bin receives white items of total size approximately d (assuming
nG > nB, i.e., a white bin exists). There are enough white items in the input
sequence to ensure this, because Opt covers mLS − mLSB LS-bins with
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white items together with a large item. By the assumption that nG > nB,
mLSB = nB. Thus, Opt has mLS − nB LS-bins without a black item. In
at most mLS/3 of these bins, the total size of white items is less than d
(these are bins with a good item). The total size of white items in any of
the remaining 2mLS/3−nB bins is at least d, that is, the total size of white
items in all bins is at least (2mLS/3−nB)×d ≥ (mLS/3−nB)× 2d. In the
above scheme, white items are placed in nG−nB ≈ mLS/3−nB bins, that
is, on average, a size of at least 2d is available for each white bin. Since
Dual-Worst-Fit tends to balance the load of white items among the bins,
the level of each bin will not be less than d, which is half of the average
available size (it will be formally proved later).

For bins where we use Dual-Next-Fit, each bin has a level less than 3/2. Thus,
the number of the non-reserved bins covered by small items is roughly lower-
bounded by 2mS/3. Reserved bins that received a good item are all covered; so,
at least αmLS bins are covered by a large and some small items. Finally, other
large items are placed pairwise in new bins. We conclude that the resulting
packing is (α, ε)-desirable and hence (for α > 0 and ε < 1

4 ) strictly better than
0.5-competitive by Lemma 2.

Unfortunately however, using only O(log log n) bits of advice, the oracle
cannot give the exact values of d and mLSB nor identify the mLSB smallest
black items. Thus, we make a number of adjustments to the above algorithm
as described in the two following subsections, resulting in a value of α smaller
than 1/15.

4.2.2 Placing the small items

Let sB denote the size of the nB’th smallest black item in the input sequence.
Let eB denote the number of items among the nB smallest black items which
have sizes in the range (s−B , s

+
B ]. Let xB denote the number of black items no

larger than s−B and let mB = xB + e−B . The numbers s−B , e−B , and m−B are given
as advice, and the algorithm opens m−B reserved black bins. This ensures that
the number of black items used in the algorithm’s reserved bins is close to
nB, but not larger than nB. Each black item of size at most s−B is packed in
a black bin. These black items are among the nB smallest black items. Each
black item with a size in (s−B , s

+
B ] is also packed in a black bin, if less than e−B

black items in the size range (s−B , s
+
B ] have already been placed in black bins.

These black items might not be among the nB smallest black items but are at
most a factor (1 + ε) larger. So, m−B reserved bins are covered by black items
that are not much larger than the smallest nB black items.

Let mW = nG−nB. The number m−W is given as advice, and the algorithm
opens m−W reserved white bins. As long as the total size of white items received
so far is at most 2d+m−W, white items are packed in the white bins using Dual-
Worst-Fit. The remaining small items are packed in S-bins using Dual-Next-
Fit.
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We let mR = m−B + m−W denote the total number of reserved bins. Note
that

mR = m−B +m−W

= (xB + e−B)− + (nG − nB)−

> (1− ε)(xB + e−B) + (1− ε)(nG − nB)

> (1− ε)2nB + (1− ε)(nG − nB)

> (1− ε)2nG (3)

Lemma 3 A reserved bin that includes any good item will be covered in the
final packing of the algorithm.

Proof Since any good item has size at least 1− d, we just need to prove that
each reserved bin receives small items of total size at least d. Since d+ ≥ d,
the claim is true for all black bins. Thus, we only need to consider the white
bins. For each white bin, we let the white level of the bin denote the total size
of white items packed in the bin.

Recall that Dual-Worst-Fit places each item in a bin with minimum white
level. This means that, if a white item is ever placed in a bin that already
has a white level of at least d, all white bins have a white level of at least d.
Assume for the sake of contradiction that no white item is placed in a bin that
already has a white level of at least d.

The algorithm stops packing white items in the white bins when

(a) we have reached the upper bound of 2d+m−W total size, or
(b) there are no more white items in the sequence,

whichever happens first. In both cases, we arrive at a contradiction.
We first consider (a), i.e., we assume that white items of total size at least

2d+m−W are packed in the white bins. By the assumption that no white item
is placed in a bin that already has a white level of at least d, the final white
level of each of the m−W white bins is less than d+ d+, a contradiction.

Now, consider (b), i.e., assume that all white items of the input sequence
are packed in white bins. Assume that exactly ` white items packed in white
bins are larger than d, and let d + e1, . . . , d + e` be the sizes of these items.
By the assumption that no white item is placed in a bin with a white level of
at least d, these ` items are packed in bins with a final white level less than
2d+ei, 1 ≤ i ≤ `, respectively. By the same assumption, the remaining m−W−`
white bins each have a white level less than 2d. Thus, the total size of white
items is

SW < (m−W − `) · 2d+
∑̀
i=1

(2d+ ei) = m−W · 2d+
∑̀
i=1

ei (4)

Opt covers mLS bins, each with a large item and some small items. Out of
the mLS large items used for these bins, fewer than nG items are larger than
1 − d (by the definition of d). Thus, at least mLS − nG ≥ 2nG of these large
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items have size at most 1 − d, and at most nB of them are combined with a
black item in the optimal packing, as nB ≥ mLSB. Therefore Opt has at least
2nG − nB ≥ 2m−W bins, each with a total size of white items of at least d.
Hence, the total size of white items is

SW ≥ (2m−W − `) · d+
∑̀
i=1

(d+ ei) = 2m−W · d+
∑̀
i=1

ei ,

contradicting Equation (4). ut

We now prove that the algorithm fulfills Property III of an (α, ε)-desirable
packing:

Lemma 4 The algorithm covers at least 2
3mS −O(εmLS) S-bins.

Proof We first show that the total size of small items packed in S-bins in the
algorithm’s packing is at least mS−O(εmLS). The total size of items that Opt
packs in S-bins is at least mS. Thus, since all small items that are not packed
in reserved bins are packed in S-bins, it is sufficient to argue that the total
size of small items packed in the reserved bins is at most a factor of O(1 + ε)
larger than the total size of the small items packed in the LS-bins of Opt.

As argued in the proof of Lemma 3, Opt packs white items of total size
at least 2dm−W in its LS-bins. Since our algorithm stops packing white items
after total size at least 2d+m−W has been reached, it packs white items of less
than 2d+m−W +d+ total size in its reserved bins. Thus, the algorithm uses less
than

2d+m−W + d+ − 2dm−W < 2(1 + ε)dm−W − 2dm−W + d+

= 2εdm−W + d+

< 2εm−W + d+

≤ 2εmLS + d+

more total size of white items for its reserved bins as does Opt for its LS-bins.

The algorithm packs no more black items in its reserved bins than does
Opt in its LS-bins. Furthermore, these items are not much larger than those
Opt uses in LS-bins since at most e−B black items in the size interval (s−B , s

+
B ]

are used in those reserved bins. Thus, since the black items no larger than s−B
are the smallest black items in the input, the total size of black items packed
in the reserved bins is at most 1 + ε times the total size of items packed in
Opt’s LS-bins.

This proves that the algorithm packs small items of total size at least
mS − O(εmLS) in its S-bins. Since no items larger than 1/2 are packed in
the S-bins, no bin gets filled to more than 3/2. This means that at least
2mS/3−O(εmLS) bins are covered. ut
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4.2.3 Placing the large items

In order to achieve an (α, ε)-desirable packing, our algorithm needs to select
approximately αmLS ≤ mR good items, and place them in the reserved bins;
Lemma 3 guarantees that these bins will be covered (Property I holds). Note
that Lemma 4 establishes Property III. Meanwhile, as we will describe, the
algorithm ensures that other large items are paired and hence each pair of
them covers a bin (Property II holds).

In order to pack at least αmLS−O(εmLS) good items in the reserved bins,
the algorithm considers three cases depending on the location of good items
in the sequence. Advice will be used to select the correct case. Furthermore,
m−LS will be given as advice.

Lemma 5 For β < 15/14, there exists an online algorithm using O(log log n)

advice bits and producing an (α, ε)-desirable packing for α ≤ (1−ε)2( 7
6−β)

1+ 3
2 (1−ε)2(1+ε)

and ε ∈ O(1/(log n)).

Proof By Lemma 4, Property III holds.
To prove that Property I holds, we first argue that the value of αmLS is

not larger than the number of reserved bins. By Equation (3), the number of
reserved bins is

mR > (1− ε)2
⌊mLS

3

⌋
>

3

4

⌊mLS

3

⌋
, for ε ≤ 1

8
.

Since β ≥ 1, we get

α ≤
(1− ε)2( 7

6 − β)

1 + 3
2 (1− ε)2(1 + ε)

<
7− 6β

6/(1− ε)2 + 9(1 + ε)
<

7− 6β

15
<

1

15
.

Large items are placed in a way to establish Properties I and II, following
a case analysis based on where good items appear in the request sequence (the
appropriate case is encoded using advice).

Case 1: Assume there are at least
⌊
αm−LS

⌋
good items among the first mR

large items in the sequence.
In this case, the algorithm places the first mR large items into the reserved

bins. After seeing all these mR items, the algorithm chooses the largest bαm−LSc
of them and declares them to be good items, which by Lemma 3 are guaranteed
to be covered. Thus, Property I holds.

The remaining mR−bαm−LSc large items in the reserved bins will be paired
with forthcoming large items. Since there are at least mLS − mR ≥ 2mLS/3
forthcoming large items and fewer than mLS/3 large items in the reserved bins
waiting to be paired, all these large items (except possibly one) can be paired
(Property II holds). In summary, in the final covering, there are bαm−LSc bins
covered by a large item (and some small items) while the remaining large items
are paired (except possibly one). Hence, Property II holds.

Case 2: Assume there are fewer than
⌊
αm−LS

⌋
good items among the first

mR large items in the sequence (Case 1 does not apply). Furthermore, assume
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there are at least
⌊
αm−LS

⌋
good items among the mR large items that follow

the first mR large items.
In this case, the algorithm places the first mR large items pairwise in

dmR/2e bins that are not reserved. The mR large items that follow are placed
in the reserved bins. After placing the last of these items in the reserved bins,
the algorithm considers these mR items and declares the bαm−LSc largest to be
good items, which by Lemma 3 are guaranteed to be covered. Thus, Property I
holds.

The remaining mR −
⌊
αm−LS

⌋
reserved bins (with large items) will need

to be covered by forthcoming large items. We know there are at least mLS −
2mR ≥ bmLS/3c forthcoming large items and fewer than bmLS/3c large items
in reserved bins waiting to be paired, so all these large items (except possibly
one) can be paired. Thus, Property II holds.

Case 3: Assume there are fewer than
⌊
αm−LS

⌋
good items among the first

mR large items and also fewer than
⌊
αm−LS

⌋
good items among the following

mR items (Cases 1 and 2 do not apply).
In this case, the algorithm places the first 2mR large items in pairs. There

are L = 2mLL +mLS − 2mR remaining large items. The algorithm places the
first F = m+

LL + bmR/2c + bαm−LS/2c − 1 of the last L large items in the
reserved bins (note that this is roughly half of the last L large items when α is
small). For this to be possible, we show first that the number of reserved bins
is at least F , i.e., F −mR ≤ 0.

F −mR = m+
LL +

⌊mR

2

⌋
+

⌊
αm−LS

2

⌋
− 1−mR

≤ m+
LL −

mR

2
+
αm−LS

2
− 1

< m+
LL − (1− ε)2nG

2
+
αm−LS

2
− 1, by Equation (3)

< m+
LL − (1− ε)2mLS

6
+
αm−LS

2

< (1 + ε)mLL − (1− ε)2mLS

6
+
αmLS

2

= (1 + ε)(β − 1)mLS − (1− ε)2mLS

6
+
αmLS

2

=

(
(1 + ε)(β − 1)− (1− ε)2

6
+
α

2

)
mLS

<

(
1 + ε

14
− (1− ε)2

6
+

1

30

)
mLS

< 0, for ε ≤ 1

8
,

The second to last equality follows since mLL = (β − 1)mLS, and the second
to last inequality follows from β < 15/14 and α < 1/15.

This establishes that there are enough reserved bins.
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Next, we show that at least αmLS−6 of the F items placed in the reserved
bins are good items. There are fewer than 2

⌊
αm−LS

⌋
good items among the

first 2mR large items. Thus, the number of good items among the last L large
items is more than nG − 2bαm−LSc. Even if all items among the last L − F
large items are good, there are still more than G = nG − 2

⌊
αm−LS

⌋
− (L− F )

good items that are placed in the reserved bins. In the following we deduce
that G > αmLS − 6:

G = nG − 2
⌊
αm−LS

⌋
− L+ F

= nG − 2
⌊
αm−LS

⌋
− (2mLL +mLS − 2mR) +m+

LL +
⌊mR

2

⌋
+

⌊
αm−LS

2

⌋
− 1

> nG − 2αm−LS − (2mLL +mLS − 2mR) +m+
LL +

mR

2
+
αm−LS

2
− 3

= nG −
3

2
αm−LS − 2mLL −mLS +

5

2
mR +m+

LL − 3

> nG −
3

2
αm−LS − 2mLL −mLS +

5

2
(1− ε)2nG +m+

LL − 3

>
7

2
(1− ε)2nG −

3

2
αm−LS −mLL −mLS − 3

>
7

6
(1− ε)2mLS −

3

2
αmLS −mLL −mLS − 6

=
7

6
(1− ε)2mLS −

3

2
αmLS − βmLS − 6

> (1− ε)2
(

7

6
− 3

2
α− β

)
mLS − 6

The second to last inequality follows since nG =
⌊
mLS

3

⌋
≥ mLS

3 −
2
3 .

Since we assumed α ≤ (1−ε)2( 7
6−β)

1+ 3
2 (1−ε)2(1+ε)

, we can write

β ≤ 7

6
−

1 + 3
2 (1− ε)2(1 + ε)

(1− ε)2
α =

7

6
− α

(1− ε)2
− 3

2
(1 + ε)α,

and

G > (1− ε)2
(

7

6
− 3

2
α− 7

6
+

α

(1− ε)2
+

3

2
(1 + ε)α

)
mLS − 6

> αmLS − 6.

Hence, at least bαmLSc − 6 of the F items placed in the reserved bins are
good items. After placing these F items, the algorithm declares the largest
bαm−LSc − 6 among them to be good items. By Lemma 3, these items (along
with small items in the reserved bins) will cover their respective bins. Thus,
Property I holds.

There are F −bαm−LSc+6 large items in reserved bins which have not been
declared good, and the L−F large items which have not arrived at this point
will be paired with them. We prove that, among the F − bαm−LSc + 6 large
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items that are not declared good, only O(εmLS) items might not be paired
with one of the remaining L− F large items:

F −
⌊
αm−LS

⌋
+ 6

= m+
LL +

⌊mR

2

⌋
+

⌊
αm−LS

2

⌋
− 1−

⌊
αm−LS

⌋
+ 6

≤ m+
LL +

⌊mR

2

⌋
−
⌊
αm−LS

2

⌋
+ 6

≤ (2m+
LL −m

+
LL) +

(
3mR − 2mR −

⌊mR

2

⌋)
−
⌊
αm−LS

2

⌋
+ 6

≤ (2mLL −m+
LL) +

(
mLS − 2mR −

⌊mR

2

⌋)
−
⌊
αm−LS

2

⌋
+O(εmLL)

< (2mLL +mLS − 2mR)−
(
m+

LL +
⌊mR

2

⌋
+

⌊
αm−LS

2

⌋
− 1

)
+O(εmLL)

= L− F +O(εmLL)

= L− F +O(εmLS), since mLL = (β − 1)mLS <
1

14
mLS

So, the number of large items in the reserved bins which are not paired will
be O(εmLS). The bins in which these unpaired items are placed, along with
the bαmLSc − 6 bins that include good items, will be the LS-bins in the final
(α, ε)-desirable packing. All large items placed in bins other than LS-bins are
paired and hence, Property II also holds. ut

4.3 Wrapping it up

Theorem 3 There is an algorithm that, provided with O(log log n) bits of
advice, achieves an asymptotic competitive ratio of at least 8

15 .

Proof The advice indicates the values of m−LS, m+
LL, d+, s−B , s+B , e−B , m−B , and

m−W. These values can all be encoded in O(log log n) bits of advice. Note that
one cannot calculate β exactly, since mLS and mLL are not known exactly.
Thus, the advice also includes 1 bit to indicate if Lemma 1 should be used
because β is larger than 15/14, or mLS = 0. If not, the advice also indicates
one of the three cases described above; this requires two more bits. Thus, the
advice is O(log log n) bits.

If Lemma 1 is used, the competitive ratio is at least 8/15. Otherwise,
provided with this advice and a sufficiently small ε, the algorithm can create

an (α, ε)-desirable packing of the input sequence for any α ≤ (1−ε)2( 7
6−β)

1+ 3
2 (1−ε)2(1+ε)

.

By Lemma 2, the resulting packing has an asymptotic competitive ratio of at

least α+2β−1
2β , for ε ∈ o(1). Choosing α =

(1−ε)2( 7
6−β)

1+ 3
2 (1−ε)2(1+ε)

and ε ≤ 1/ log n gives

an algorithm with asymptotic competitive ratio at least 12β−4
15β ≥ 8

15 . ut
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5 Impossibility result for advice of sub-linear size

This section uses what is normally referred to as lower bound techniques, but
since our ratios are smaller than 1, an upper bound is a negative result, and
we refer to such results as negative or impossibility results. In what follows, we
show that, in order to achieve any competitive ratio larger than 15/16, advice
of linear size is necessary. We use a reduction from the binary separation
problem, introduced in [12]:

Definition 2 The Binary Separation Problem is the following online problem.
The input I = (n1, σ = 〈y1, y2, . . . , yn〉) consists of n = n1 +n2 positive values
which are revealed one by one. There is a fixed partitioning of the set of values
into a subset of n1 large values and a subset of n2 small values, so that all large
values are larger than all small values. Upon receiving a value yi, an online
algorithm must guess if y belongs to the set of small or large values. After
the algorithm has made a guess, it is revealed to the algorithm which class yi
belongs to. The number n1 is known to the algorithm from the beginning.

A reduction from a closely related problem named “binary string guessing
with known history” shows that, in order to guess more than half of the values
correctly, advice of linear size is required:

Lemma 6 ([12]) For any fixed β > 0, any deterministic algorithm for the
Binary Separation Problem that is guaranteed to guess correctly on more than
(1/2 + β)n input values on an input of length n needs at least Ω(n) bits of
advice.

The following lemma provides the actual reduction from the Binary Sepa-
ration Problem to bin covering.

Lemma 7 Consider the bin covering problem on sequences of length 2n for
which Opt covers n bins. Assume that there is an online algorithm A that
solves the problem on these instances using b(n) bits of advice and covers at
least n − r(n)/8 bins. Then there is also an algorithm Bsa that solves the
Binary Separation Problem on sequences of length n using b(n) +O(log n) bits
of advice and guessing incorrectly at most r(n) times.

Proof In the reduction, we encode requests for the algorithm Bsa as items for
bin covering, which will be given to the algorithm A. Assume we are given an
instance I = (n1, σ = 〈y1, y2, . . . , yn〉) of the Binary Separation Problem, in
which n1 is the number of large values (n1 + n2 = n), and the values yt are
revealed in an online manner (1 ≤ t ≤ n). We create an instance of the bin
covering problem for A which has length 2n.

The bin covering sequence starts with n1 “huge” items of size 1 − ε for
some ε < 1

2n (this will ensure that at least one item of size at least 1/2 is in
every covered bin). The value n is given as advice, using O(log n) bits. In the
optimal covering, each of these huge items will be placed in a different bin. The
next n items are created in an online manner, so that we can use the result
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of their packing to guess the requests for the Binary Separation Problem. Let
τ = yt (1 ≤ t ≤ n) be a requested value from the Binary Separation Problem,
and choose an increasing function f : R+ → (ε, 2ε). When τ is presented to
Bsa, f(τ) is presented to A, and the item of size f(τ) is said to be associated
with the request τ . If the algorithm places the item f(τ) in one of the bins
opened by the huge items, Bsa will answer that τ is small; otherwise, Bsa
will answer that τ is large.

The last n2 items of the bin covering instance are defined as complements
of the items in the bin covering instance associated with large values in the
binary separation instance (the complement of item x is 1−x). We do not need
to give the last items complementing the small items in order to implement
the algorithm Bsa, but we need them for the proof of the quality of the
correspondence that we are proving.

Call an item in the bin covering sequence “large” if it is associated with a
large value in the Binary Separation Problem, and “small” if associated with
a small value. For the bin covering sequence produced by the reduction, an
optimal algorithm pairs each of the small items with a huge item, placing it
in one of the first n1 bins. Opt pairs the large items with their complements,
starting one of the next n2 bins with each of these large items. Hence, the
number of bins in an optimal covering is n1 + n2 = n.

Let a1 and a2 denote the number of the two types of mistakes that the bin
covering algorithm A makes, causing incorrect answers to be given by Bsa.
Thus, we let a1 denote the number of small items which do not get placed with
a huge item, and a2 denote the number of large items which are placed with a
huge item. Clearly, the number of errors in the answers provided by the binary
separation algorithm Bsa is a1+a2. We claim that the number of bins covered
by the bin covering algorithm A is at most n1 + n2 − (a1 + a2)/8. A covers at
most (n1 − a1) + (n2 − a2) bins in the same way that Opt does; these bins
include either a huge item with a small item or a large item and its complement.
Moreover, at most min{a1, a2} bins are covered by huge items that are placed
with large items, but no small item. Similarly, at most min{a1/2, a2} bins are
covered with two small items and a complement of a large item. Finally, there
are p = max{a1 − a2, 0} bins with huge items that are not covered with any
small or large items; similarly, there are q = max{a2 − a1/2, 0} complements
of large items that are not covered by large or pairs-of-small items. These p+q
items can be paired to cover at most (p + q)/2 bins. In total, the number of
bins that are covered by A is

A(I) ≤ (n1 − a1) + (n2 − a2) + min{a1, a2}+ min{a1/2, a2}
+ 1

2 (max{a1 − a2, 0}+ max{a2 − a1/2, 0})

If a1 ≤ a2, the above value becomes n1 +n2− a2/2 + a1/4 which is indeed
at most n1 + n2 − (a1 + a2)/8. If a1/2 ≤ a2 ≤ a1, the above value becomes
n1 +n2−a1/4 which is at most n1 +n2− (a1 +a2)/8. Finally, if a2 < a1/2, the
above value becomes n1+n2−(a1+a2)/2 which is less than n1+n2−(a1+a2)/8.
In summary, when the algorithm Bsa makes a1+a2 errors in partitioning small
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1− L3
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(a) The optimal covering

1− ε

S1

1− ε

S2

1− ε

S3

1− ε

S4

L1

1− L1

L2

1− L2

L3

1− L3

L4

1− L4

(b) A covering with 8 mistakes

Fig. 3: Two coverings for the sequences used in reduction from binary sepa-
ration to bin covering. Grey items show huge items that arrive first. Red and
green items are respectively large and small items that need to be separated.
The sequence ends with complements of large items. (a) shows an optimal
packing and (b) shows a covering with eight mistakes; as a result of the eight
mistakes, one fewer bin is covered.

and large items, A covers at most n − (a1 + a2)/8 bins (intuitively speaking,
each eight mistakes in binary guessing causes at least one fewer bin to be
covered; see Figure 3). In other words, if the number of covered bins is at
least n− r(n)/8, then the number of binary separation errors must be at most
r(n). ut

It turns out that reducing the Binary Separation Problem to bin covering
(the above lemma) is more involved than a similar reduction to the bin packing
problem [12]. The difference roots in the fact that there are more ways to place
items into bins in the bin covering problem compared to bin packing; this is
because many arrangements of items are not allowed in bin packing due to the
capacity constraint.
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Theorem 4 Consider the bin covering problem on sequences of length n. To
achieve a competitive ratio of 15/16+δ, in which δ is a small, but fixed positive
constant, an online algorithm needs to receive Ω(n) bits of advice.

Proof Consider a bin covering algorithm A with competitive ratio 15/16 + δ,
and sequences of length 2n for which Opt covers n bins. A covers (15/16 +
δ)n = n − r(n)/8 bins for r(n) = (1/2 − 8δ)n. Applying Lemma 7, we con-
clude that there is an algorithm that solves the Binary Separation Problem on
sequences of length n using at most O(log n) bits of additional advice, while
making at most (1/2 − 8δ)n errors. By Lemma 6, we know that such an al-
gorithm requires Ω(n) bits of advice. Thus, A requires Ω(n) bits of advice as
well. ut

6 Concluding remarks

We have established that for bin covering Θ(log log n) bits of advice are nec-
essary and sufficient to improve the competitive ratio obtainable by purely
online algorithms. This differs significantly from the results from bin packing,
where a constant number of bits of advice are sufficient.

Obvious questions are: How much better than our bound of 8/15 = 0.533̄
can one do with O(log log n) bits of advice? Can one do better with O(log n)
bits of advice?

Acknowledgements We thank anonymous referees for their valuable comments.
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4. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new and improved algo-
rithm for online bin packing. In: 26th Annual European Symposium on Algorithms
(ESA), Leibniz International Proceedings in Informatics (LIPIcs), vol. 112, pp. 5:1–
5:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2018)
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the k-server problem. Journal of Computer and System Sciences 86, 159–170 (2017)



26 Boyar, Favrholdt, Kamali, and Larsen
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