
Algorithmica (2024) 86:2786–2821
https://doi.org/10.1007/s00453-024-01239-y

Online Unit Profit Knapsack with Predictions

Joan Boyar1 · Lene M. Favrholdt1 · Kim S. Larsen1

Received: 11 July 2022 / Accepted: 14 May 2024 / Published online: 13 June 2024
© The Author(s) 2024

Abstract
A variant of the online knapsack problem is considered in the setting of predictions. In
Unit Profit Knapsack, the items have unit profit, i.e., the goal is to pack as many items
as possible. For Online Unit Profit Knapsack, the competitive ratio is unbounded. In
contrast, it is easy to find an optimal solution offline: Pack as many of the smallest
items as possible into the knapsack. The prediction available to the online algorithm is
the average size of those smallest items that fit in the knapsack. For the prediction error
in this hard online problem, we use the ratio r = a

â where a is the actual value for this

average size and â is the prediction.We give an algorithmwhich is e−1
e -competitive, if

r = 1, and this is best possible among online algorithms knowing a and nothing else.
More generally, the algorithm has a competitive ratio of e−1

e r , if r ≤ 1, and e−r
e r , if

1 ≤ r < e. Any algorithm with a better competitive ratio for some r < 1 will have a
worse competitive ratio for some r > 1. To obtain a positive competitive ratio for all
r , we adjust the algorithm, resulting in a competitive ratio of 1

2r for r ≥ 1 and r
2 for

r ≤ 1. We show that improving the result for any r < 1 leads to a worse result for
some r > 1.

Keywords Online algorithms · Predictions · Knapsack problem · Competitive
analysis

1 Introduction

In this paper, we consider the Online Unit Profit Knapsack Problem. The request
sequence consists of n items with sizes in (0, 1]. An online algorithm receives them

Joan Boyar, Lene M. Favrholdt and Kim S. Larsen have contributed equally to this work.

B Kim S. Larsen
kslarsen@imada.sdu.dk

Joan Boyar
joan@imada.sdu.dk

Lene M. Favrholdt
lenem@imada.sdu.dk

1 Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55,
5230 Odense M, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-024-01239-y&domain=pdf

Algorithmica (2024) 86:2786–2821 2787

one at a time, with no knowledge of future items, and makes an irrevocable decision
for each, either accepting or rejecting the item. It cannot accept an item if its size, plus
the sum of the sizes of the already accepted items, is greater than 1. The goal is to
accept as many items as possible. The obvious greedy algorithm solves the offline Unit
Profit Knapsack Problem, since the set consisting of as many of the smallest items as
fit in the knapsack is an optimal solution. Let Opts denote this optimal solution. Even
for this special case of the Knapsack Problem, no competitive online algorithm can
exist.

We study the Online Unit Profit Knapsack Problem under the assumption that (an
approximation of) the average item size, a, in Opts is known to the algorithm. This
particular information could likely be estimated from historical data. The measure
we use for the prediction error is the ratio r = a

â , where a is the actual value for
this average size in Opts and â is the prediction. We consider the case, where the
exact value of â = a is given to the algorithm by an oracle, calling this an accurate
prediction, as well as the case where â could possibly be incorrect. Predictions could
be inaccurate, for example, because the characteristics of the input may be different
depending on the time of day the input is produced, which source produced the input,
etc.

For an algorithm using predictions, the competitive ratio obtained with accurate
predictions is called the consistency of the algorithm [1, 2]. Note that in our case, the
prediction is accurate when r = 1. The robustness of the algorithm is its competitive
ratio in the case where there is no guarantee on the quality of the prediction. We
obtain algorithms that are at least 1

2 -consistent and have a smooth transition between
consistency and robustness that depends on the value of the error measure, r . Since
no online algorithm can be competitive without predictions, no online algorithm with
predictions can be better than 0-robust.

1.1 Preliminaries

For any input sequence, σ , and algorithm, Alg, for the Online Unit Profit Knapsack
Problem, Alg(σ) denotes the number of items accepted by Alg when processing σ .

We use the asymptotic competitive ratio throughout this paper. Thus, an algo-
rithm Alg, is c-competitive if there exists a constant b such that for all request
sequences σ , Alg(σ) ≥ cOpt(σ) − b. Alg’s competitive ratio is then sup{c |
Alg is c-competitive}. Note that this is a maximization problem and all competitive
ratios are in the interval [0, 1].

We use the notation N = {1, 2, 3, . . .}. At any given time during the processing of
the input sequence, the level of the knapsack denotes the sum of the sizes of the items
already accepted.

1.2 PreviousWork

The Knapsack Problem is well studied and comes in many variants; see Kellerer et al.
[3]. Cygan et al. [4] refer to the online version we study, where all items give the same
profit, as the unit case. They mention that it is well-known that no online algorithm for

123

2788 Algorithmica (2024) 86:2786–2821

this version of the problem is competitive, i.e., has a finite competitive ratio, and they
present a sequence showing this for the strict competitive ratio (where the additive
constant b must be zero). The sequence starts with an item of size 1. The sequence
either ends there or is followed by 1/ε items of size ε – if and only if the algorithm
accepts the item of size 1. Thus, the ratio is either 0/1 = 0 or 1/(1/ε) = ε. Since
the adversary can choose ε, the algorithm cannot have a strict competitive ratio better
than zero.

In the General Knapsack Problem, each item comes not only with a size, but also
with a profit, and the goal is to accept as much profit as possible given that the total
size must be at most 1. The ratio of the profit to the size is the importance of an item.
(This is sometimes called value, but we want to avoid confusion with other uses of
that word.)

The Online General Knapsack Problem was first studied by Marchetti-Spaccamela
and Vercellis [5]; they prove that the problem does not allow for competitive online
algorithms, even for Relaxed Knapsack (fractions of items may be accepted), where
all item sizes are 1. They concentrate on a stochastic version of the problem, where
both the profit and size coefficients are random variables. They present both a fixed
and an adaptive threshold algorithm.

The Online General Knapsack Problem with oracle-based advice was studied in
[6]. In this model, the algorithm is given information, called advice, about the input,
and the goal is to determine how many bits of advice are necessary and sufficient to
achieve a given competitive ratio. The fundamental issues andmany of the early results
on oracle-based advice algorithms, primarily in the direction of advice complexity,
can be found in [7, 8], though many newer results for specific problems have been
published since. The advice used in [6] includes the maximum importance, v, for
items to accept. Since there might be many items of that importance, but the optimal
solution may contain very few of them, they also include further advice, the fraction
of the knapsack filled by items of importance v. In addition, they limit the amount of
advice by giving k-bit approximations to these two values, the maximum importance
and the fraction of the knapsack needed for these items. They show that no online
algorithm using fewer than log n bits of advice is competitive, but for ε > 0, there
exists a (1 + ε)-competitive algorithm using O(log n) bits of advice.

The authors of [6] also study theOnlineUnweighted (or Simple)KnapsackProblem,
where the profit of each item is equal to its size. This version of the Knapsack Problem
is also called the proportional or uniform case. In [6], it is shown that 1 bit of advice
is sufficient to be 1

2 -competitive, �(log n) bits are necessary to be better than 1
2 -

competitive, and n − 1 advice bits are necessary and sufficient to be optimal.
In [9], the Online General Knapsack Problem is considered with the assumption

that all items are much smaller than the unit capacity of the knapsack. The results
depend on the ratio, γ , between known upper and lower bounds on the importance of
the items. For this setting, a threshold algorithm of optimal competitive ratio 1

ln(γ)+1
is known [10]. The threshold depends on γ and the current level of the knapsack and
it lower bounds the importance of accepted items. This is in contrast to our threshold
function which depends on the number of relatively large items accepted so far. In [9],
a parameter, α, is added to the threshold function, resulting in a family of algorithms
with a competitive ratio which is proven to be at most a certain factor, depending on α,

123

Algorithmica (2024) 86:2786–2821 2789

worse than the optimal competitive ratio. For α = 1, this factor, called the degradation
factor, is 1. Within this family, the subset of algorithms with a degradation factor
no larger than a given factor, φ, is called the policy class of φ-degraded algorithms.
Within a given policy class, standard machine learning techniques are used on data
from a real world application to choose an algorithm, balancing worst-case guarantees
(competitive ratio) against the performance in typical cases.

The Online General Knapsack Problem is also considered in [11], again with upper
and lower bounds on the possible importance of items. To obtain a finite number of
importance values, each importance is rounded to the nearest power of 1+ε, for some
ε > 0.

For each rounded importance, v, upper and lower bounds on the total size of items
with importance v are predicted. The authors present an algorithm which has some
similarities to ours. In particular their budget function has a similar function to our
threshold function; both specify the maximum number of the low importance, large
items that need to be accepted to obtain the proven competitive ratios. Their algorithm
obtains what they prove to be the best possible competitive ratio (for the given pre-
dictions without rounding), up to an additive factor that goes to zero as the size of the
largest item goes to zero. The paper also considers two generalizations of the Knap-
sack Problem, called the Generalized One-Way Trading Problem and the Two-Stage
Online Knapsack Problem.

The Bin Packing Problem is closely related to the Knapsack Problem. This is
especially true for the dual variant where the number of bins is fixed and the objective
is to pack as many items as possible [12]; the Unit Price Knapsack Problem is Dual
Bin Packing with one bin. The standard Bin Packing Problem was considered with
predictions in [13]. They give an algorithm with a parameter that can be adjusted to
obtain consistency r and robustness max{33 − 18r , 7/4}, for any 1.5 < r ≤ 1.75.

Bin Packing is also studied in [14] in the standard setting for online algorithms
with predictions, giving a trade-off between consistency and robustness, with the
performance degrading as a function of the prediction error. They assume discrete
item sizes, and the prediction is the number of items of each possible size. They also
have experimental results.

Much additional work has been done for other online problems, studying variants
with predictions (machine-learned advice, for instance), inspired by the work of Lyk-
ouris and Vassilvitskii [1, 15] and Purohit et al. [2] in 2018. Some of this further work
is in the directions of search-like problems [16–20], scheduling [21–32], rental prob-
lems [33–35], caching/paging [36–40], and other problems [14, 41–45], while some
papers attack multiple problems [13, 46–49]. For a survey, see [50].

We note here that the error measure we use, r = a
â , has similarities to the dis-

tortion used for a non-clairvoyant flow problem in [24]. The distortion is based on
the maximum ratios of the estimated-to-real and real-to-estimated processing times.
In [24], the algorithm presented does not have or use knowledge of the distortion,
and the competitive ratio found is a function of the distortion. They call this type of
algorithm distortion-oblivious. Similarly, the algorithms we present do not have or
use knowledge of the error ratio, and the competitive ratios we find are functions of
the error ratio, so these algorithms could be called error ratio oblivious. Note that
the non-clairvoyant flow time problem considered in [24] is one of the few problems

123

2790 Algorithmica (2024) 86:2786–2821

Table 1 The competitive ratios obtained by the two algorithms are shown.

Ranges of r CAT (0 < r < e) RAT (0 < r)

r = 1 e−1
e ≈ 0.6321 1

2

r ≤ 1 r(e−1)
e

r
2

r ≥ 1 e−r
e

1
2r

Tightness Pareto-like optimality Pareto-like optimality

(optimal for r = 1)

The target ranges for the algorithms are shown in parentheses. If CAT is used outside the range, the bound
does not give additional information and the competitive ratio is just zero

considered with predictions, where there is no algorithm without predictions with a
constant competitive ratio, and [24] also uses ratios for the error measure/distortion.

1.3 Our Results

We consider both the case where the prediction â is known to be accurate, so r = 1,
and the case where it might not be accurate. Different algorithms are presented, but
they have a common form.

For our algorithm Consistent Adaptive Threshold (CAT) where the predic-
tion is accurate and, thus, â = a, the competitive ratio is e−1

e , and we prove a matching
upper bound that applies to any deterministic algorithm knowing a. This upper bound
limits how well any algorithm using accurate predictions can do; the competitive ratio
cannot be better than e−1

e ≈ 0.6321 for r = 1.
If CAT is used for possibly inaccurate predictions, it obtains a competitive ratio of

r e−1
e for r ≤ 1, e−r

e for 1 ≤ r ≤ e, and 0 for r ≥ e. No deterministic algorithm can
be better than this for both r < 1 and 1 < r < e.

For another algorithm, Robust Adaptive Threshold (RAT), we have results
for two cases: for r ≤ 1 the competitive ratio is r

2 , and for r ≥ 1 the competitive ratio
is 1

2r . Thus, for accurate predictions, the competitive ratio of RAT is 1
2 , slightly worse

than for the other algorithm. We show a negative result implying that a deterministic
online algorithm cannot both be 1

2r -competitive for a range of large r -values and better
than 1

2 -competitive for r = 1. We summarize these results in Table 1.
In Sect. 6, we consider two upper bounds on the advice complexity of the Online

Unit Price Knapsack Problem. One is based on an algorithm in this paper, relating
missing bits in advice to errors in predictions. The other is based on techniques from
[6], with different predictions, the maximum size for items to accept, plus the fraction
of the knapsack filled by items of that size. A lower bound for the amount of advice
necessary for optimality is also presented.

The section on advice complexity is brief, since our main focus is on predictions of
information that may be easily obtainable. It seems believable that the average size of
items inOpts of requests could be estimated: SinceOpts contains the smallest items in
the request sequence, it is easy to calculate an average fromprevious request sequences.
It is a single number to collect and store, as opposed tomore detailed information about

123

Algorithmica (2024) 86:2786–2821 2791

a distribution. Since so little storage is required, one could keep multiple copies if,
for instance, the expected average changes during the day. Our results also hold if the
prediction is 1

Opt
. Thus, it is sufficient to store either the average size of the items in

Opts or the value Opt.

2 Online Unit Profit KnapsackWithout Predictions

As mentioned earlier, it is well-known that no Online Unit Profit Knapsack algorithm
can have a constant competitive ratio. For completeness, we give a proof for the
asymptotic competitive ratio here, since we have not found it in the literature.

Theorem 1 No algorithm for the Online Unit Profit Knapsack Problem can have a
constant competitive ratio.

Proof Assume for the sake of contradiction that there exists an algorithm, Alg, and
constants, b and c, such that for any input sequence, σ , Alg(σ) ≥ cOpt(σ) − b.

Consider a family of input sequences, σr , r ∈ N, each consisting of r rounds,
i = 1, 2, . . . , r . In Round i ,

⌊ i
c

⌋
items of size c

i arrive.
Optwill accept all items of the last round, so after i rounds,Algmust have accepted

at least c
⌊ i
c

⌋ − b > i − 1 − b items. Since Alg can only accept an integer number
of items, this means that Alg has accepted at least i − b items. Thus, the i th largest
item accepted by Alg must have size at least c

b+i . Therefore, after r rounds, the total
size of items accepted by Alg must be at least

r∑

k=b+1

c

k
= c

(
r∑

k=1

1

k
−

b∑

k=1

1

k

)

> c(ln(r) − ln(b) − 1), since ln(n) <

n∑

k=1

1

k
< ln(n) + 1, n ∈ N .

However, since ln(b) is a constant and limr→∞ ln(r) = ∞, there must exist an r such
that this total size is larger than 1. �	

3 Threshold Algorithms

The simplest way to use information about the average item size, a, in an optimal
solution seems to be to choose some q > 1 and accept items of size at most qa, as
long as they fit in the knapsack. The algorithm One- Threshold does exactly this,
with q = 2.

Theorem 2 The competitive ratio of One- Threshold, as defined in Algorithm 1, is
1
2 .

Proof For the lower bound, consider any input sequence, σ . We first consider the case
whereOne- Threshold rejects an item of size less than 2a. In this case, the knapsack

123

2792 Algorithmica (2024) 86:2786–2821

Algorithm 1 Algorithm One- Threshold.
1: â ← predicted average size of items in Opts
2: level ← 0
3: for each input item x do
4: if size(x) ≤ 2â and level + size(x) ≤ 1 then
5: Accept x
6: level += size(x)
7: else
8: Reject x

is filled to more than 1− 2a. Since all accepted items have size at most 2a, this means
that the algorithmhas acceptedmore than 1

2a−1 items.Hence,One- Threshold(σ) >
1
2Opt(σ) − 1.

We now consider the case where One- Threshold rejects no items of size at most
2a. We let � and s denote the number of items in Opt’s knapsack that are larger than
2a and no larger than 2a, respectively. Note that One- Threshold(σ) ≥ s, since the
algorithm rejects no items of size at most 2a. Since the average size of the items in
Opt’s knapsack is a, � < s, so Opt(σ) = � + s < 2 s ≤ 2 · One- Threshold(σ).

For the upper bound, consider the sequence σ1 consisting of
⌊ 1
2a

⌋
items of size 2a

followed by
⌊ 1
a

⌋
items of size a. We note thatOne- Threshold(σ1) < 1

2Opt(σ1)+1.
For an alternative proof of the upper bound, consider the sequence σ2 consisting

of � items of size 2a + ε� and s items of size εs , where � = s − 1, s = ⌊ 1
2a − 1

2

⌋
,

ε� < a/�, and εs = (a − �ε�)/s. The number of items in σ2 is � + s = 2s − 1 and
their total size is �(2a + ε�) + sεs = �(2a + ε�) + a − �ε� = 2�a + a = (2 s − 1)a,
so the average size is a and the total size is (2

⌊ 1
2a − 1

2

⌋− 1)a ≤ 1. Thus, Opt(σ2) =
� + s = 2s − 1 = 2 · One- Threshold(σ2) − 1. �	

Considering σ1 in the proof of Theorem 2, it is clear that to improve the competitive
ratio, one would have to lower the threshold to a value smaller than 2a. However, with
a threshold smaller than 2a, the sequence σ2 of that same proof could be adapted
to prove a competitive ratio lower than 1

2 . Thus, working with just one threshold
is not enough to obtain a competitive ratio better than 1

2 . However, an algorithm
starting with a threshold larger than 2a can obtain a competitive ratio better than 1

2 by
sometimes lowering the threshold to a value below 2a at some point during execution.
The algorithm Two- Thresholds outlined in Algorithm 2 is such an algorithm. It
guards against both sequences σ1 and σ2 by allowing some items larger than 2a to be
packed in the knapsack, but carefully limiting the number of such items.

Theorem 3 The competitive ratio of Two- Thresholds, as defined in Algorithm 2,
is 5

9 .

Proof For the lower bound, consider any input sequence, σ . We first consider the case
where Two- Thresholds rejects an item, x , even though its size is below the current
threshold. Since the highest threshold is 9a

4 , size(x) ≤ 9a
4 and the knapsack is filled to

more than 1 − 9a
4 . Since Two- Thresholds accepts at most

⌈ 2
9a

⌉
items larger than

3a
2 ,

123

Algorithmica (2024) 86:2786–2821 2793

Algorithm 2 Algorithm Two- Thresholds.
1: â ← predicted average size of items in Opts
2: level ← 0
3: n� ← 0
4: for each input item x do
5: if size(x) ≤ 3â

2 and level + size(x) ≤ 1 then
6: Accept x
7: level += size(x)
8: else if size(x) ≤ 9â

4 and n� < 2
9â and level + size(x) ≤ 1 then

9: Accept x
10: level += size(x)
11: n�+ = 1
12: else
13: Reject x

Two- Thresholds(σ) ≥
⌈

2

9a

⌉
+ 1 − ⌈ 2

9a

⌉ 9a
4

3a
2

= 2

3a
− 1

2

⌈
2

9a

⌉
>

5

9a
− 1

≥ 5

9
Opt(σ) − 1 .

Wenowconsider the case,whereTwo- Thresholdsnever rejects an itemof size no
more than the current threshold.We let T be the final threshold of Two- Thresholds.
Thus, T = 9a

4 , if the algorithm never lowers the threshold, and otherwise, T = 3a
2 .

We let � and s denote the number of items in Opt’s knapsack of size more than T and
at most T , respectively.

If T = 9a
4 , then � < 4s

5 , because the average size of the items inOpt’s knapsack is a.
Thus,Opt(σ) = �+ s < 9s

5 . Since Two- Thresholds never rejects an item no larger
than 9a

4 , Two- Thresholds(σ) ≥ s ≥ 5
9Opt(σ). Otherwise, T = 3a

2 , which means
that � < 2s, and Opt(σ) = � + s < 3s. Thus, we arrive at Two- Thresholds(σ) ≥
2
9a + s > 2

9Opt(σ) + 1
3Opt(σ) = 5

9Opt(σ).
For thematching upper bound, the adversary uses a sequence, σ , consisting of

⌊ 2
9a

⌋

items of size 9a
4 followed by

⌊ 1
3a

⌋
items of size 3a

2 , ending with
⌊ 1
a

⌋
items of size a.

The first
⌊ 2
9a

⌋+ ⌊ 1
3a

⌋
items have a total size of more than 1− 15a

4 > 1− 4a. Hence,
Two- Thresholds(σ) ≤ 5

9a + 3 = 5
9Opt(σ) + 3. �	

As it turns out inSect. 3.1,workingwith anunboundednumber of different threshold
values, an algorithm of optimal competitive ratio e−1

e ≈ 0.63 can be obtained.

3.1 The Adaptive Threshold Algorithm

In Algorithm 3, we introduce an algorithm template, which is used to establish algo-
rithmswith predictions in the two following sections. The template omits the definition
of a threshold function, T (i), since it is different for the two algorithms. T (i) is a
threshold function in the sense that all items larger than this threshold are rejected.
It depends on the predictions given, though not in the same manner. The threshold
decreases over time: In both algorithms, the threshold functions have the property that

123

2794 Algorithmica (2024) 86:2786–2821

T (i) > T (i + 1) for i ≥ 1. The role of the threshold function is to ensure that, for
any i ≥ 1, items larger than T (i) are accepted, only if fewer than i − 1 items larger
than T (i) have already been accepted. Note that the threshold could be lowered step
by step from T (i) to T (i + 1), i ≥ 1, by accepting an item of size between T (1) and
T (2), then an item between T (2) and T (3), and so on. However, it could also, for
instance, be lowered directly from T (1) to T (10). This could be because of having
six items of sizes between T (8) and T (9) and three items between T (9) and T (10) in
the knapsack. The intuition is that the more relatively large items we already have in
the knapsack, the more selective we can be, since there is a limit to how many items
above a certain size Opt can accept while getting an average size of a. An example
showing how the algorithm works is presented below as Example 1.

We use the notation nx to denote the number of accepted items strictly larger than
x .

Algorithm 3 Algorithm Adaptive Threshold, AT.
1: â ← predicted average size of items in Opts
2: level ← 0
3: for each input item x do
4: i = max j≥0

{
nT (j+1) = j

}

5: if size(x) ≤ T (i + 1) and level + size(x) ≤ 1 then
6: Accept x
7: level += size(x)
8: else
9: Reject x

Note that using max j≥0
{
nT (j+1) ≥ j

}
instead of max j≥0

{
nT (j+1) = j

}
in Line 4

would result in the same algorithm, since we stop accepting items above a given size
when the quota set by T (i) has been reached. Thus, i is nondecreasing through the
processing of the input sequence, and the value of the threshold function, T (i), is
decreasing in i , so larger items cannot be accepted after i increases.

For the e−1
e -consistent algorithm, the threshold function is T (i) = âe/(âe(i −1)+

1) (see Algorithm 4), and for the 1
2 -consistent algorithm, the threshold function is

T (i) = √â/(2i) (see Algorithm 7).

Example 1 Suppose a request sequence is

I =
〈
3

16
,
1

24
,
3

8
,
1

3
,
1

4
,
1

3
,
1

12
,
1

6
,
1

16
,
1

9
,
2

9

〉
.

Note that an optimal solution contains the seven smallest items, filling the knapsack
to level 3

16 + 1
24 + 1

12 + 1
6 + 1

16 + 1
9 + 2

9 = 7
8 . The average size in Opts is

1
8 . Suppose

the prediction is correct, so â = 0.125. Using the thresholds from Algorithm 4, we
get that

T (1) = e

8
≈ 0.340,

123

Algorithmica (2024) 86:2786–2821 2795

T (2) = e

e + 8
≈ 0.254,

T (3) = e

2e + 8
≈ 0.202,

T (4) = e

3e + 8
≈ 0.168,

T (5) = e

4e + 8
≈ 0.144,

and the smaller threshold values are not relevant. Figure1 shows the sizes of the items
in I compared to the threshold values.

The algorithm processes I as follows:

• The first item is accepted, since 3
16 ≤ T (1). Since 3

16 ≤ T (2), the threshold
remains T (1).

• The second item is also accepted, since 1
24 ≤ T (1) and 3

16 + 1
24 ≤ 1.

• The third item is rejected, since 3
8 > T (1).

• The fourth item is accepted, since 1
3 ≤ T (1) and 3

16 + 1
24 + 1

3 ≤ 1. Since 1
3 > T (2),

the threshold is lowered to T (2).
• The fifth item is accepted, since 1

4 ≤ T (2) and 3
16 + 1

24 + 1
3 + 1

4 ≤ 1. The threshold
is lowered to T (4), since each of the three items of sizes 3

16 ,
1
3 , and

1
4 is larger than

T (4).
• The sixth item is rejected, since 1

3 > T (4).
• The seventh item is accepted, since 1

12 < T (4) and 3
16 + 1

24 + 1
3 + 1

4 + 1
12 = 43

48 ≤ 1.
• The eighth item is rejected, since the remaining empty space in the knapsack is
only 5

48 < 1
6 .

• Theninth item isaccepted, since 1
16 < T (4) and 3

16+ 1
24+ 1

3+ 1
4+ 1

12+ 1
16 = 23

24 ≤ 1.
• The two remaining items are rejected, since they do not fit in the knapsack.

Algorithm 4 accepts six items.

4 Accurate Predictions

In this section, we give an e−1
e -competitive algorithm which receives a, the exact

average size of the items in Opts , as a prediction and prove that it is best possible
among algorithms that gets the exact value of a and no other information.

4.1 Positive Result–Lower Bound

To define an algorithm for accurate predictions, we define a threshold function; see
Algorithm 4. Throughout this section, we assume that â = a, but the algorithm is also
used for possibly inaccurate predictions in Sect. 5.1.

First, we prove that CAT with â = a has competitive ratio at least e−1
e ≈ 0.6321.

For that, we need two simple lemmas, the first of which involves an obvious general-
ization of Harmonic numbers to non-integers:

123

2796 Algorithmica (2024) 86:2786–2821

Fig. 1 Illustrating Example 1. Items are shown in the order they appear in I . Black items are accepted by
Algorithm 4 and shaded items are rejected

Algorithm 4 Consistent Adaptive Threshold, CAT.

1: Define T (i) = âe

âe(i − 1) + 1
for i ≥ 1

2: Run Adaptive Threshold, Algorithm 3

Definition 1 For a function f and real-valued x and y such that y − x ∈ N ∪ {0},
define

∑y
i=x f (i) = f (x) + f (x + 1) + · · · + f (y).

For any real-valued k ≥ 1, define the generalized Harmonic number, Hk, by Hk =∑k
i=1+k−�k
 1

i .

The proofs of the following two lemmas consist of simple calculations and can be
found in Appendix A.

Lemma 1 If k ≥ p ≥ 1 and k − p ∈ N ∪ {0}, then

ln k − ln(p + 1) ≤ Hk − Hp ≤ ln k − ln p.

Lemma 2 For any a > 0, e1−ae ≥ e − e2a.

With those two lemmas, we can now prove the following theorem.

Theorem 4 For â = a, CAT, as defined in Algorithm 4, is e−1
e -competitive.

Proof Consider a request sequence σ . Considering the conditional statement in the
algorithm, ifCAT rejects an item, x , then either size(x) > T (i+1) or level+size(x) >

1.
Case 1: This is the case where, at some point, CAT rejects an item, x , with a size
no larger than the current threshold, because level + size(x) > 1. The value of T (k)

123

Algorithmica (2024) 86:2786–2821 2797

from Algorithm 4 is an upper bound on the size of the kth largest item accepted by
the algorithm. Thus, the kth largest accepted item has size at most

T (k) = ae

ae(k − 1) + 1
= 1

k − 1 + 1
ae

.

Using the generalization of the Harmonic function over non-integer values given
in Definition 1, we obtain an upper bound on the total size of items accepted by CAT
of

level ≤
CAT(σ)∑

k=1

1

k − 1 + 1
ae

=
CAT(σ)+ 1

ae−1∑

k= 1
ae

1

k
= H

CAT(σ)+ 1
ae−1 − H 1

ae−1.

By Lemma 1,

H
CAT(σ)+ 1

ae−1 − H 1
ae−1 < ln

(
CAT(σ) + 1

ae − 1
)− ln

(1
ae − 1

)

= ln

(
CAT(σ)+ 1

ae−1
1
ae−1

)
.

By assumption, level + size(x) > 1, and since level ≤ ln

(
CAT(σ)+ 1

ae−1
1
ae−1

)
, we have

ln

(
CAT(σ) + 1

ae − 1
1
ae − 1

)

> 1 − size(x)

⇔ CAT(σ) + 1
ae − 1

1
ae − 1

> e1−size(x)

⇔ CAT(σ) >

(
1

ae
− 1

)
e1−size(x) − 1

ae
+ 1

⇔ CAT(σ) >
e1−size(x) − 1

ae
+ 1 − e1−size(x) .

In the algorithm, i is at least zero, so it does not consider accepting items larger
than T (1) = ae. Thus, size(x) ≤ ae.

123

2798 Algorithmica (2024) 86:2786–2821

CAT(σ) >
e1−size(x) − 1

ae
+ 1 − e, since − e1−size(x) > −e

>
e1−ae − 1

ae
+ 1 − e, by the observation above

≥ e − e2a − 1

ae
+ 1 − e, by Lemma 2

= e − 1

ae
− 2e + 1

≥ e − 1

e
Opt(σ) − 2e + 1, since Opt(σ) ≤ 1

a
.

So, lim
Opt→∞ CAT(σ)

Opt(σ)
≥ e−1

e .
Case 2:This is the casewhereCAT never rejects any item, x , when size(x) ≤ T (i+1).
Let it denote the final value of i as the algorithm terminates. Suppose Opt accepts �

items larger than T (it + 1) and s items of size at most T (it + 1). Since Opt accepts �

items larger than T (it + 1) and �+ s items in total, we have a > � · T (it + 1)/(�+ s),
which is equivalent to

s >

(
T (it + 1)

a
− 1

)
� . (1)

By the definition of T , we have that T (it + 1) = ae
aeit+1 . Solving for the it on the

right-hand side, we get

it = 1

T (it + 1)
− 1

ae
. (2)

Thus, CAT has accepted at least it = 1
T (it+1) − 1

ae items of size greater than T (it +1).
Further, due to the assumption in this second case, CAT has accepted all of the s
items no larger than T (it + 1). To see this, note that the values of the variable i of
the algorithm can only increase, so at no point has there been a size demand more
restrictive than T (it + 1).

We split in two subcases, depending on how T (it + 1) relates to the average size,
a, in Opts .
Subcase 2a: T (it + 1) > a. In this subcase, the lower bound on s of Ineq. (1) is
positive.

CAT(σ)

Opt(σ)
≥
(

1
T (it+1) − 1

ae

)
+ s

� + s
, by Eq. (2)

>

(
1

T (it+1) − 1
ae

)
+
(
T (it+1)

a − 1
)

�

� +
(
T (it+1)

a − 1
)

�
, by Ineq. (1)

123

Algorithmica (2024) 86:2786–2821 2799

=
(

1
T (it+1) − 1

ae

)
+
(
T (it+1)

a − 1
)

�

T (it+1)
a �

.

The second inequality follows since the ratio is smaller than one and s is replaced by
a smaller, positive term in the numerator as well as the denominator.

We prove that this is bounded from below by e−1
e :

(
1

T (it+1) − 1
ae

)
+
(
T (it+1)

a − 1
)

�

T (it+1)
a �

≥ e − 1

e

⇔ e

T (it + 1)
− 1

a
+ e

(
T (it + 1)

a
− 1

)
� ≥ e

T (it + 1)

a
� − T (it + 1)

a
�

⇔ e

T (it + 1)
− 1

a
≥
(
e − T (it + 1)

a

)
�

⇔ ea − T (it + 1)

aT (it + 1)
≥ ea − T (it + 1)

a
�

⇔ 1

T (it + 1)
≥ � .

For the last biimplication, we must argue that ea − T (it + 1) ≥ 0, but this holds
since T (1) = ea and T is decreasing. Finally, the last statement, 1

T (it+1) ≥ � holds
regardless of the relationship between T (it + 1) and a, since the knapsack obviously
cannot hold more than 1

T (it+1) items of size greater than T (it + 1).
Subcase 2b: T (it + 1) ≤ a.

CAT(σ)

Opt(σ)
≥
(

1
T (it+1) − 1

ae

)
+ s

� + s
, by Eq. (2)

≥
(

1
T (it+1) − 1

ae

)

�
, since s ≥ 0 and

CAT(σ)

Opt(σ)
≤ 1

>

(
1

T (it+1) − 1
ae

)

1
T (it+1)

, since, as above, � ≤ 1

T (it + 1)

= 1 − T (it + 1)

ae

≥ 1 − a

ae
, by the subcase we are in

= e − 1

e
.

This concludes the second case, and, thus, the proof. �	

123

2800 Algorithmica (2024) 86:2786–2821

4.2 General Negative Result–Upper Bound

Now, we show that CAT is best possible among online algorithms knowing a and
nothing else, using Algorithm 5 for the adversary.

Algorithm 5Adversarial sequence establishing the competitive ratio of a best possible
online algorithm knowing a.

� Assume a < 1
2e and 1

a ∈ N

1: ε ← a2
10

2: k ←
⌊

1
ae

⌋

3: while Alg’s level ≤ 1 − 1
k − kε do

4: for k times do
5: Give an item of size 1

k − ε

6: if Alg accepts then
7: k++
8: continue (* the while-loop *)

� Alg did not accept any of the k items of this round.
9: Give 1

a − k items of size kaε
1−ka

10: terminate � Case 1
11: Give 1

a items of size a � Case 2

Before continuing with the analysis, consider the following example execution of
Algorithm 5. The algorithm is used in the proof of Theorem 5.

Example 2 If a = 1
6 , then ε = 1

12960 and k = 2 initially. Suppose that while k = 2,
Alg accepts only the second item. Then, the adversarial sequence starts with I2 =
{ 12 − ε, 1

2 − ε}. We consider two of the possible cases after this:

1. If Alg accepts none of the three items when k = 3, then the sequence ends with
I3 = { 13 − ε, 1

3 − ε, 1
3 − ε, ε, ε, ε}. Opt accepts all six items in I3 and none in I2,

while Alg accepts one item from I2 and at most the last three from I3.
2. If Alg accepts the first item when k = 3, then the sequence ends with I3 =

{ 13 − ε, 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 }. Opt accepts the last six items, while Alg accepts one

item from I2, plus the item of size 1
3 − ε and at most one item of size 1

6 from I3.

Theorem 5 Any deterministic algorithm getting only the correct value of a as a pre-
diction has a competitive ratio of at most e−1

e .

Proof Let Alg denote the online algorithm knowing a, and let σ be the adversar-
ial sequence defined by Algorithm 5, which explains how the adversary defines its
sequence based on Alg’s actions.

The adversary strategy is to make Alg accept one item of each size 1
k(i) , i =

0, 1, . . ., where k(i) = ⌊ 1
ae

⌋+ i , until an item of the next size, size 1
k(i+1) , would not

fit inAlg’s knapsack (Case 2), or k(i) items of size 1
k(i) have been given without Alg

accepting any of them (Case 1). In Case 1, the sequence finishes with 1
a − k(i) very

small items, giving an average size of a when combined with the k(i) items of size 1
k(i)

123

Algorithmica (2024) 86:2786–2821 2801

rejected by Alg. These items are the items accepted by Opt. In Case 2, the sequence
ends with 1

a items of size a accepted by Opt. Since Alg’s knapsack is already almost
full, Alg can fit at most two of these items in its knapsack.

Let kt be the value of k at the beginning of the last iteration of the while-loop.
We perform a case analysis based on how the generation of the adversarial sequence
terminates.
Case 1:
Opt accepts the kt items of size 1

kt
− ε in the last iteration of the while-loop and the

1
a − kt items of size kt aε

1−kt a
for a total of 1

a items of total size

kt

(
1

kt
− ε

)
+
(
1

a
− kt

)
ktaε

1 − kta
= 1 − ktε + (1 − kta)

ktε

1 − kta
= 1.

Note that the average size of the items accepted by Opt is a, consistent with the
prediction.

Alg accepts one item in each iteration of the while-loop, except the last iteration,
and at most 1

a − kt items after that, so no more than

kt −
⌊
1

ae

⌋
+ 1

a
− kt <

1

a
− 1

ae
+ 1 = e − 1

e
· 1
a

+ 1.

Thus,

Alg(σ) ≤ e − 1

e
· 1
a

+ 1 = e − 1

e
Opt(σ) + 1.

Case 2:
Opt accepts the 1

a items of size a. For the analysis of Alg, we start by establishing
an upper bound on kt . The following inequality holds since Alg accepts one item per
round, andAlg’s level just before the last round is at most 1− 1

kt
− ktε before the last

item of size 1
kt

− ε is accepted.

kt∑

k=
⌊

1
ae

⌋

(
1

k
− ε

)
≤ 1 − (kt + 1)ε ⇒ Hkt − H⌊ 1

ae

⌋
−1

− ktε < 1 − ktε

⇒ ln(kt) − ln

(⌊
1

ae

⌋)
< 1, by Lemma 1

⇔ kt < e

⌊
1

ae

⌋
. (3)

In the case we are treating, Alg leaves the while-loop because its level is more
than 1− 1

kt+1 − (kt + 1)ε. Now, we give a bound on the amount of space available at
that point. For the first inequality, note that by the initialization of k in the algorithm,
kt ≥ ⌊ 1

ae

⌋
.

123

2802 Algorithmica (2024) 86:2786–2821

1

kt + 1
+ (kt + 1)ε <

1
⌊ 1
ae

⌋+ 1
+
(
e

⌊
1

ae

⌋
+ 1

)
ε < ae +

(
1

a
+ 1

)
a2

10

<

(
e +

(
1 + a

10

))
a < 3a .

Thus, after the while-loop, Alg can accept at most two of the items of size a.
Clearly, the number of rounds in the while-loop is kt − ⌊ 1

ae

⌋+ 1. Using kt < e
⌊ 1
ae

⌋

from Eq. (3), we can now bound Alg’s profit:

Alg(σ) ≤ kt −
⌊
1

ae

⌋
+ 1 + 2 < (e − 1)

⌊
1

ae

⌋
+ 3

≤ e − 1

e

1

a
+ 3 = e − 1

e
Opt(σ) + 3.

This establishes the bound on the competitive ratio of e−1
e .

Finally, to ensure that our proof is valid, we must argue that the number of rounds
we count in the algorithm and the sizes of items we give are non-negative. For the
remainder of this proof, we go through the terms in the algorithm, thereby establishing
this.

The largest value of k in the algorithm is kt , and by Eq. (3) kt < e
⌊ 1
ae

⌋
< 1

a .
Additionally, from the start value of k, we know that

⌊ 1
ae

⌋ ≤ k. Using these facts,
together with the assumption from the algorithm that a < 1

2e , we get the following
bounds on the various terms.

1 − 1

k
− kε > 1 − 1

⌊ 1
ae

⌋ − 1

a

a2

10
> 1 − 1

⌊
1
1/2

⌋ − 1

20e
> 0.

Further, 1
k − ε ≥ 1

kt
− ε > 1

1
a

− a2
10 > 0 and 1

a − k ≥ 1
a − kt > 1

a − 1
a = 0.

For the last relevant value, 1 − ka ≥ 1 − kta > 1 − 1
a a = 0 and from Case 1, we

know that the 1
a − kt items given in Line 9 of the algorithm sum up to at most one. �	

5 Predictions

For the case where the predictions may be inaccurate, the algorithm CAT can be used
with â possibly not being a, obtaining a positive competitive ratio as long as r < e,
see Subsect. 5.1. In Subsect. 5.2, we give an adaptive threshold algorithm, RAT, that
has a positive competitive ratio for all positive r .

For r < 1
2 (e + √

e2 − 2e) ≈ 2.06, CAT has a better competitive ratio than RAT.
Thus, if an upper bound on r of approximately 2 (or lower) is known, CAT may be
preferred, and if a guarantee for any r is needed, RAT should be used.

123

Algorithmica (2024) 86:2786–2821 2803

5.1 Predictions with r < e

In this section, we consider the algorithm CAT with a prediction, â, guaranteed to be
less than e times as large as the correct value, a.

5.1.1 Positive Result–Lower Bound

In this section, we consider the algorithmCATwith â instead of a. Note that the lower
bound of the theorem below is positive only when r < e. For r ≥ e, the algorithm
may not accept any items, and, hence, its competitive ratio is 0.

Theorem 6 CAT has a competitive ratio of at least

cCAT(r) ≥

⎧
⎪⎨

⎪⎩

e − 1

e
· r , if r ≤ 1

e − r

e
, if r ≥ 1 .

Proof The proof is analogous to the proof of Theorem 4.
In Case 1, replacing a by â, since the algorithm bases its actions on â instead of a,

and setting Opt(σ) = 1
r â , results in a ratio of

CAT(σ)

Opt(σ)
≥ e − 1

e
· r

instead of e−1
e .

In Case 2, the lower bound on s given in Ineq. (1) depends on the actual average
size, a, whereas the value of it given in Eq. (2) depends on â, since the algorithm uses
â. The subcase distinction is still based on a.

In Subcase 2a, we obtain

CAT(σ)

Opt(σ)
≥
(

1
T (it+1) − 1

âe

)
+ s

� + s
≥
(

1
T (it+1) − 1

âe

)
+
(
T (it+1)

a − 1
)

�

T (it+1)
a �

.

Going through the same calculations as in the proof of Theorem 4, we get that

(
1

T (it+1) − 1
âe

)
+
(
T (it+1)

a − 1
)

�

T (it+1)
a �

≥ e − r

e

⇔ e

T (it + 1)
− 1

â
≥
(
e − r · T (it + 1)

r â

)
�

⇔ 1

T (it + 1)
≥ � .

123

2804 Algorithmica (2024) 86:2786–2821

In subcase 2b, we obtain

CAT(σ)

Opt(σ)
≥
(

1
T (it+1) − 1

âe

)
+ s

� + s
> 1 − T (it + 1)

âe
≥ 1 − a

âe
= 1 − r â

âe
= e − r

e
.

Thus, we obtain a lower bound of e−1
e ·r in Case 1 and a lower bound of e−r

e in Case 2.
For r ≤ 1, e−1

e · r ≤ e−r
e , and for r ≥ 1, e−1

e · r ≥ e−r
e . �	

5.1.2 General Negative Result–Upper Bound

The following result shows that, for r < e, no algorithm can be better than CAT for
both r < 1 and r > 1.

Theorem 7 If a deterministic algorithm is e−r
e -competitive for all 1 ≤ r < e, it cannot

be better than r · e−1
e -competitive for any r ≤ 1.

Proof Consider an algorithm, Alg, and assume that Alg is e−r
e -competitive for all

1 ≤ r < e. Then there exists a constant, b, such that Alg(σ) ≥ e−r
e Opt(σ) − b,

for any sequence σ and any 1 ≤ r < e. This constant b is given as a parameter to
Algorithm 6, constructing an adversarial sequence, σ .

Algorithm 6 Adversarial sequence for r < e; the adversarial algorithm takes two
parameters, r2 < 1 and b ≥ 0.

� Assume â < 1
2e+b and 1

r2â
∈ N

1: k ←
⌊

1
âe

⌋
− 1

2: while Alg’s level ≤ 1 − 1
k+1 − (b + 1)âe and 1

k+1 ≥ â do
3: k++
4: for k times do
5: Give an item of size 1

k
6: if Alg accepts then
7: continue (* the while-loop *)

8: if Alg has accepted fewer than k −
⌊

1
âe

⌋
− b items then

9: terminate
10: Give 1

r2â
items of size r2â

Let kt be the value of k at the end of the last iteration of the while-loop. If the
adversarial algorithm terminates in Line 9, thenAlg has accepted at most kt −

⌊ 1
âe

⌋−
b − 1 items. For termination in Line 9, Alg has not accepted any of the kt items in
the for-loop immediately preceding this, so kt items of size 1

kt
were given. In this

case, Opt accepts exactly these kt items from the last iteration of the while-loop, and
a = 1

kt
. Let r1 = a/â. Since 1

kt
≥ â, r1 ≥ 1. Then,

Alg(σ) ≤ kt −
⌊
1

âe

⌋
− b − 1 < Opt(σ) − 1

âe
− b = Opt(σ) − r1

ae
− b

123

Algorithmica (2024) 86:2786–2821 2805

= Opt(σ) − r1
e
Opt(σ) − b = e − r1

e
Opt(σ) − b,

contradicting that Alg(σ) ≥ e−r
e Opt(σ) − b. Thus, the adversarial algorithm cannot

terminate in Line 9.
Since the adversarial algorithm does not terminate in Line 9, it must accept its

first item no later than in the (b + 2)nd iteration of the while-loop, and the i th item
accepted by Alg has size at least 1⌊

1
âe

⌋
+b+i

≥ 1
1
âe+b+i

. Thus, the total size, St , of the

items accepted by Alg in the while-loop is

St ≥
kt∑

k= 1
âe+b+1

1

k

=
kt∑

k=1

1

k
−

1
âe−1∑

k=1

1

k
−

1
âe+b∑

k= 1
âe

1

k

> Hkt − H 1
âe−1 − (b + 1)âe

≥ ln(kt) − ln

(
1

âe

)
− (b + 1)âe, by Lemma 1.

Thus, we have

St > ln(kt) − ln

(
1

âe

)
− (b + 1)âe . (4)

By the first condition of the while-loop, and since Alg accepts at most one item per
iteration, St ≤ 1−(b+1)âe. By Ineq. (4), thismeans that ln(kt)−ln

(1
âe

)−(b+1)âe <

1 − 1
kt

− (b + 1)âe, and we get

ln(kt) − ln

(
1

âe

)
− (b + 1)âe < 1 − (b + 1)âe

⇔ ln

(
kt
1
âe

)

< 1

⇔ kt
1
âe

< e

⇔ kt <
1

â
. (5)

Furthermore, by the conditions of the while-loop, we have that St > 1 − 1
kt+1 −

(b + 1)âe or 1
kt+1 < â. If St > 1 − 1

kt+1 − (b + 1)âe, then, using that kt ≥ ⌊ 1
âe

⌋
,

St > 1− 1⌊
1
âe

⌋
+1

−(b+1)âe > 1− 1
1
âe

−(b+1)âe = 1−âe−(b+1)âe = 1−(b+2)âe.

123

2806 Algorithmica (2024) 86:2786–2821

Otherwise, we get

1

kt + 1
< â

⇔ kt >
1

â
− 1 . (6)

Plugging this into Ineq. (4), we get

St > ln

(
1

â
− 1

)
− ln

(
1

âe

)
− (b + 1)âe

= ln

(
1
â − 1

1
âe

)

− (b + 1)âe

= ln
(
e − âe

)− (b + 1)âe

= 1 + ln(1 − â) − (b + 1)âe

> 1 − (b + 2)âe, since â <
1

2
.

Thus, in either case, we get St > 1 − (b + 2)âe. Therefore, the algorithm can fit at
most (b+2)âe

r2â
= (b+2)e

r2
of the items of size r2â into its knapsack, where r2 is one of the

parameters to the adversarial algorithm as defined in Algorithm 6. Since Alg packs
at most one item per iteration of the while-loop, this means that

Alg(σ) ≤ kt −
⌊
1

âe

⌋
+ 1 + (b + 2)e

r2

< kt − 1

âe
+ 2 + (b + 2)e

r2

<
1

â
− 1

âe
+ 2 + (b + 2)e

r2
, by Ineq. (5)

= e − 1

âe
+ 2 + (b + 2)e

r2

= r2
e − 1

e
Opt(σ) + 2 + (b + 2)e

r2
.

For any r < 1, this yields an upper bound on the competitive ratio of r e−1
e , since for

any given r , 2 + (b+2)e
r is a constant. �	

Wealso note the contrapositive version of this theorem, i.e., that if a deterministic algo-
rithm is better than r · e−1

e -competitive for some r ≤ 1, it cannot be e−r
e -competitive

for all 1 ≤ r < e.

123

Algorithmica (2024) 86:2786–2821 2807

5.1.3 The Competitive Ratio ofCAT

Combining the positive result fromTheorem6with the negative result fromTheorem7,
we obtain that, if r is guaranteed to be smaller than e, no deterministic algorithm can
be better than CAT for both r < 1 and r > 1. Moreover, we get the following tight
result on the performance of CAT.

Theorem 8 CAT has a competitive ratio of

cCAT(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r · e − 1

e
, if r ≤ 1

e − r

e
, if 1 ≤ r ≤ e

0, if r ≥ e.

Proof For different cases depending on r , we want to determine the exact value
of cCAT(r). We do this by proving upper and lower bounds on those values, case
by case. The lower bounds have already been established in Theorem 6, except for the
case r ≥ e. However, for any case, the competitive ratio is non-negative.

Since CAT is e−r
e -competitive for 1 ≤ r < e, the upper bound for r < 1 follows

from Theorem 7.
For 1 ≤ r < e, consider an input sequence, σ , consisting of � items of size âe+ ε�

followed by s items of size εs , where

� = 1

âe
− 1, s = 1

âr
− 1

âe
+ 1, εs = âe − �ε�

s
, and ε� <

âe

�
.

The number of items in σ is � + s = 1
r â , and their total size is

�(âe + ε�) + sεs = �âe + �ε� + âe − �ε� = (� + 1)âe = 1.

Thus, the average size of the items in σ is r â = a and Opt(σ) = 1
r â . CAT accepts

only the small items, so

CAT(σ) = 1

âr
− 1

âe
+ 1 = e − r

e

1

r â
+ 1 = e − r

e
Opt(σ) + 1.

For r > e, consider the input sequence consisting of 1
r â items of size r â. Opt

accepts all items and CAT accepts none. �	

5.2 Predictions with No Guarantee

In this section, we again consider predictions but now with no restriction on how large
r can be.

123

2808 Algorithmica (2024) 86:2786–2821

5.2.1 Positive Result–Lower Bound

When considering the case where the average size of items in Opts is estimated to be
â, and the accurate value is a = r · â, we consider two cases, r > 1 and r < 1. In
either case, we have the problem that we do not even know which case we are in, so,
when large items arrive, we have to accept some to be competitive. The algorithm we
consider when the value of r is not necessarily one achieves similar competitive ratios
in both cases. Algorithm 7, RAT, isAdaptive Thresholdwith a different threshold
function than was used for more accurate predictions in CAT.

Algorithm 7 Robust Adaptive Threshold, RAT.

1: Define T (i) =
√

â
2i for i ≥ 1

2: Run Adaptive Threshold, Algorithm 3

Sinceweneed to accept larger items than in the case of accurate predictions,we need
a threshold function that decreases faster than the threshold function used in Sect. 4,
in order not to risk filling up the knapsack before the small items arrive. Therefore,
it may seem surprising that we are using a threshold function that decreases as 1√

i
,

when the threshold function of Sect. 4 decreases as 1
i . However, the

1
i -function of the

algorithm for accurate predictions is essentially offset by 1
ae .

We prove a number of more or less technical results before stating the positive
results for r ≤ 1 (Theorem 10) and r ≥ 1 (Theorem 9).

Lemma 3 For any k ≥ 1, the total size of the k largest items accepted by RAT is at
most

√
2kâ.

Proof RAT calls Algorithm 3, and by the condition in its if-statement, as soon as i
items of size greater than T (i + 1) have been accepted, no more items larger than
T (i + 1) are accepted after that. Thus, for each i ≥ 0, at most i items of size greater

than
√

â
2(i+1) are accepted. This means that the i th largest item accepted by RAT has

size at most
√

â
2i . Thus, the total size of the k largest accepted items is bounded by

k∑

i=1

√
â

2i
≤
√
â

2

∫ k

0

1√
i
di =

√
â

2
· 2√k = √

2kâ,

since f (i) = 1√
i
is a decreasing function. �	

Corollary 1 If RAT rejects an item based on the level being too high, it has accepted
at least � 1

2â
 items.
Proof If RAT has accepted k items when it receives an item with a size no larger
than the current bound, T (i + 1), that does not fit in the knapsack, then by Lemma 3,

123

Algorithmica (2024) 86:2786–2821 2809

√
2(k + 1)â > 1. Now,

√
2(k + 1)â > 1 ⇔ k >

1

2â
− 1 ⇒ k ≥

⌊
1

2â

⌋
.

�	
The following corollary implies that RAT never rejects an item based on the level

being too high if r > 2. This is because r > 2 means that the items in Opt are
relatively large compared to â. Since Opt accepts the smallest items of the sequence,
it means that the sequence contains relatively few small items. Thus, the algorithm
reserves space for small items that never arrive.

Corollary 2 If RAT rejects an item based on the level being too high, RAT(σ) >
r
2Opt(σ) − 1.

Proof By Corollary 1,

RAT(σ) >
1

2â
− 1 = r

2
· 1

r â
− 1 ≥ r

2
Opt(σ) − 1 .

�	
For proving Theorems 9 and 10 below, we need Lemmas 4 and 5. Lemma 4 is a

technical lemma, the proof of which can be found in Appendix A.

Lemma 4 Assume that r , â, q > 0, i ≥ 0, and � <

√
2(i+1)

â . If

2r
√
2â(i + 1) − 2r â(i + 1) + q − 2 ≤ 0,

then

(i + 1) +
(

1
r
√

2â(i+1)
− 1

)
�

�

r
√

2â(i+1)

>
q

2
.

Lemma 5 Assume that Opt accepts � items larger than
√

â
2(i+1) and s items of size at

most
√

â
2(i+1) , i ≥ 0. Then, the following inequalities hold:

1 s > �

(
1

r
√
2â(i + 1)

− 1

)

, and

2 � <

√
2(i + 1)

â
.

Proof Since Opt’s accepted items have average size a, we have that

r â = a >
� ·
√

â
2(i+1) + s · 0
� + s

,

123

2810 Algorithmica (2024) 86:2786–2821

and, equivalently,

s > �

(
1

r
√
2â(i + 1)

− 1

)

.

In addition, since Opt accepts � items larger than
√

â
2(i+1) , �

√
â

2(i+1) < 1, so

� <

√
2(i + 1)

â
.

�	
For the case where the actual average size inOpts is at least as large as the predicted

average size, we get the following result:

Theorem 9 For all request sequences σ , such that r ≥ 1,

RAT(σ) ≥ 1

2r
Opt(σ) − 1 .

Proof By Corollary 2, if RAT rejects an item in σ due to the knapsack not having
room for the item, RAT(σ) ≥ r

2Opt(σ) − 1 ≥ 1
2rOpt(σ) − 1 for r ≥ 1.

Now, suppose thatRAT does not reject any item due to it not fitting in the knapsack.
If RAT is not optimal, it must reject due to the size of the item. Let it denote the final
value of i when the algorithm is run. This means that RAT has accepted it items of

size greater than
√

â
2(it+1) . We perform a case analysis based on whether this value is

smaller or larger than r â.
Case 1: r ≥ 1√

2â(it+1)
.

In this case, it + 1 ≥ 1
2r2â

and Opt(σ) ≤ 1
r â ≤

√
2(it+1)

â . Thus,

RAT(σ) + 1

Opt(σ)
≥ it + 1
√

2(it+1)
â

=
√
â(it + 1)

2
≥
√
â 1
2r2â

2
= 1

2r
.

Therefore, RAT(σ) ≥ 1
2rOpt(σ) − 1.

Case 2: r < 1√
2â(it+1)

.

Suppose Opt accepts � items larger than
√

â
2(it+1) and s items of size at most

√
â

2(it+1) . Note that RAT also accepts the s items of size at most
√

â
2(it+1) , since we

are in the case where it does not reject items because of the knapsack being too full.
Given the input sequence σ , we consider the ratio

RAT(σ) + 1

Opt(σ)
≥ (it + 1) + s

� + s
. (7)

123

Algorithmica (2024) 86:2786–2821 2811

The result follows if this ratio is always at least 1
2r .

Subcase 2a: it + 1 ≥ 1
2â .

In this case, RAT(σ) ≥ it ≥ 1
2â − 1, while Opt(σ) ≤ 1

r â . Thus, RAT(σ) ≥
r
2Opt(σ) − 1.
Subcase 2b: it + 1 < 1

2â .

By Ineq. (7) and Item 1 of Lemma 5, and since RAT(σ)+1
Opt(σ)

≤ 1,

RAT(σ) + 1

Opt(σ)
≥ (it + 1) + s

� + s
≥

(it + 1) +
(

1
r
√

2â(it+1)
− 1

)
�

�

r
√

2â(it+1)

.

We now show that this is at least 1
2r . From our case conditions, it + 1 < 1

2â and

1 ≤ r < 1√
2â(it+1)

, we get that 1
r2

> 2â(it + 1) and 0 < 2â(it + 1) < 1. Consider

the function

f (r) = 2r
√
2â(it + 1) − 2r â(it + 1) + 1

r
− 2.

Taking the derivative with respect to r gives

f ′(r) = 2
√
2â(it + 1) − 2â(it + 1) − 1

r2
.

Setting this equal to zero and solving for r , we find

r∗ = 1
√
2
√
2â(it + 1) − 2â(it + 1)

.

The possible maximum value for f (r) in the range for r is then at 1, r∗, or 1√
2â(it+1)

.

For all three values, f (r) ≤ 0. The hardest (but still simple) case is for r = r∗, where

f (r∗) = 2
√

v − v
√
2
√

v − v
+
√
2
√

v − v − 2,

where we let v denote 2â(it + 1). Note that due to the subcase we are in, 0 < v < 1.
Now,

2
√

v − v
√
2
√

v − v
+
√
2
√

v − v − 2 ≤ 0 ⇔ 2
√

v ≤ v + 1 ⇔ 0 ≤ (v − 1)2 ,

which clearly holds. By Item 2 of Lemma 5, the result now follows from Lemma 4
with q = 1

r . �	
For the case where the actual average size in Opts is no larger than the predicted

average size, we get the following result:

123

2812 Algorithmica (2024) 86:2786–2821

Theorem 10 For all request sequences σ , such that r < 1,

RAT(σ) ≥ r

2
Opt(σ) − 1.

Proof The proof follows that of the previous theorem.
Case 1. it + 1 ≥ 1

2â .

Since � ≥ it + 1 (otherwise RAT is optimal), RAT has accepted at least 1
2â − 1

items, while Opt can accept at most 1
r â . Thus, RAT(σ) ≥ r

2 · 1
r â − 1 ≥ r

2Opt(σ)− 1.

Case 2. it + 1 < 1
2â .

By Item 1 of Lemma 5 and since RAT(σ)+1
Opt(σ)

≤ 1,

RAT(σ) + 1

Opt(σ)
≥ (it + 1) + s

� + s
≥

(it + 1) +
(

1
r
√

2â(it+1)
− 1

)
�

�

r
√

2â(it+1)

.

We will show that this is at least r
2 . Consider the function

f (r) = 2r
√
2â(it + 1) − 2r â(it + 1) + r − 2.

Taking the derivative with respect to r gives

f ′(r) = 2
√
2â(it + 1) − 2â(it + 1) + 1,

which is positive, since by the case condition, 0 < 2â(it + 1) < 1. Thus, f (r) is an
increasing function for the values of â, it + 1, and r considered in this case, so the
maximum value is at the maximum value of r , r = 1, giving that

f (r) ≤ 2r
√
2â(it + 1) − 2r â(it + 1) + r − 2 < 0.

By Item 2 of Lemma 5, the result now follows from Lemma 4 with q = r . �	

5.2.2 General Negative Result–Upper Bound

In Sect. 4, we showed that, even with accurate predictions, no deterministic algorithm
can be better than e−1

e -competitive. In this section, we give a trade-off in the com-
petitive ratio attainable by any algorithm for different values of r . Theorem 11 below
leads to Corollary 3, which shows that if an algorithm, Alg, performs as well as RAT
for all 1 ≤ r ≤ 1

2â , then Alg cannot perform better than RAT for any r ≤ 1. The
theorem gives a more general result using a parameter z, which, if set equal to 2, gives
the trade-off just described.

Theorem 11 Let 0 < z ≤ 2 and consider a deterministic algorithm, Alg. If Alg is
1
zr -competitive for every r between

2
z and

1√
zâ
, its competitive ratio is at most zr

4 , for

every r ≤ 2
z .

123

Algorithmica (2024) 86:2786–2821 2813

Proof We consider the adversary that gives the input sequence σz defined by Algo-
rithm 8.

Algorithm 8Adversarial sequence establishing trade-off in performance with respect
to r ; the adversarial algorithm takes parameters, z, q, and b, such that 0 < z ≤ 2,
0 < q < 1√

zâ
, and b ≥ 0.

� Assume 1
qâ ∈ N

1: p ← � z
4â

2: k ← 0

3: while k ≤ p − 1 do
4: k++

5: Give
⌊√

zk
â

⌋
items of size

√
â
zk

6: if Alg has accepted fewer than k − b items then terminate

7: Give 1
qâ items of size qâ

Consider an online algorithm,Alg, and assume that there exists a constant, b, such
that Alg(σ) ≥ 1

zrOpt(σ) − b, for any sequence σ and any r such that 2
z ≤ r ≤ 1√

zâ
.

Now, consider the adversary that gives the input sequence σz defined by Algorithm 8.
If the adversarial algorithm terminates in Line 6, then, Alg has accepted at most

k − b − 1 items. In this case, a =
√

â
zk , and Opt accepts exactly the

⌊√
zk
â

⌋
items

from the last iteration of the while-loop. Since a = r â, r =
√

1
zkâ , which lies between√

1
zpâ ≥

√
1
zâ · 4â

z = 2
z and 1√

zâ
. Thus,

Alg(σz) ≤ k − b − 1 ≤ k − 1
⌊√

zk
â

⌋Opt(σz) − b <
k − 1
√

zk
â − 1

Opt(σz) − b

<
k
√

zk
â

Opt(σz) − b =
√
kâ

z
Opt(σz) − b = 1

zr
Opt(σz) − b ,

where the second strict inequality holds because 1 is added to the numerator and
denominator of a positive fraction less than 1. This contradicts the assumption that for
each r between 2

z and 1√
zâ
, Alg(σ) ≥ 1

zrOpt(σ) − b, for any sequence σ , when the
adversarial algorithm terminates in Line 6. Thus, the adversarial algorithm does not
terminate there.

If the adversarial algorithm does not terminate in Line 6, r = q and Opt(σz) =
1
qâ = 1

r â . Moreover, for Alg, the i th accepted item must have size at least
√

â
z(i+b) ,

123

2814 Algorithmica (2024) 86:2786–2821

for 1 ≤ i ≤ p − b. Thus, these first p − b items fill the knapsack to at least

p∑

i=b+1

√
â

zi
≥
√
â

z

∫ p+1

b+1

1√
i
di =

√
â

z
(2
√
p + 1 − 2

√
b + 1),

where we use that 1√
i
is a decreasing function.

Since the items of size r â are the smallest items of the sequence, this means that

Alg(σz) ≤ p +
1 −

√
â
z (2

√
p + 1 − 2

√
b + 1)

r â

≤ z

4â
+

1 −
√

â
z

(
2
√

z
4â − 2

√
b + 1

)

r â

= z

4â
+

1 − 1 + 2
√

â(b+1)
z

r â

= 1

r â

⎛

⎝ zr

4
+ 2

√
â(b + 1)

z

⎞

⎠

=
⎛

⎝ zr

4
+ 2

√
â(b + 1)

z

⎞

⎠Opt(σz) .

As a function of â, the upper bound is zr
4 + 2

√
â(b+1)

z , but the second term becomes

insignificant as â approaches zero. �	
We also note the contrapositive version of this theorem, i.e., if Alg is better than

zr
4 -competitive for some r ≤ 2

z , it cannot be
1√
zâ
-competitive for all r between 2

z and
1√
zâ
.

Setting z = 2 in Theorem 11 demonstrates a Pareto-like optimality for RAT:

Corollary 3 Consider a deterministic algorithm, Alg.
If Alg is 1

2r -competitive for every r between 1 and 1√
2â
, it has a competitive ratio

of at most r
2 , for every positive r ≤ 1.

Moreover, if Alg is better than r
2 -competitive for some r ≤ 1, it cannot be 1

2r -
competitive for all r between 1 and 1√

2â
.

6 Advice Complexity

In this section,we briefly consider theOnlineUnit ProfitKnapsack Problem in terms of
advice complexity, concentrating on upper bounds on the number of bits, following the
techniques in [6], used for the General Knapsack Problemwith advice, andmany other

123

Algorithmica (2024) 86:2786–2821 2815

articles on advice complexity including [51, 52]:When representing (an approximation
of) a number, x , the k most significant bits of x are given along with a number, z,
representing the number of bits between these k bits and the binary point in x . Two
different possible algorithms are explained, the first demonstrating how algorithms
with predictions may be useful in defining algorithms with good advice complexity,
since approximating values with few bits is related to having some limited error in a
prediction. In addition, a non-constant lower bound on the number of bits needed for
optimality is presented.

An algorithm based on CAT
The prediction given in the algorithms CAT and RAT is the value a, representing the
average size of an item inOpts , and it could have some error. One could useCAT in the
advice complexity setting, assuming that an oracle gives two values: z, the number of
zeros between the binary point and the most significant bit in the binary representation
of a, followed by s, the k most significant bits of a. In this case, the prediction â given
for a is s

2z+k . Since the high order bit of s is 1, this value is at least
1

2z+1 . The error in the
prediction, â, is only due to the missing low order bits (assumed, possibly incorrectly,
to be zero). The missing bits represent a number less than 1

2z+k . Thus, the ratio, r , in

a = r â is in the range 1 ≤ r ≤ 1 + 1
2k−1 .

We denote by CATa the advice based version of CAT described above. Since
1 ≤ r ≤ 1 + 1

2k−1 < e, Theorem 6 gives the following guarantee.

CATa(σ) ≥ e − 1 − 1
2k−1

e
Opt(σ), for all σ.

Note that the length of the advice is independent of the length of the request sequence,
though dependent on the values in that sequence. The value, z, and the bitstring, s,
must be specified using self-delimiting encoding, since we do not know howmany bits
are used for them. For example, �log(z + 1)� could be written in unary (�log(z + 1)�
ones, followed by a zero) before writing z itself in binary. Treating s similarly, at most
2(k + �log(z + 1)� + 1) bits are used. This gives us:

Proposition 1 CATa has a competitive ratio of at least
e−1− 1

2k−1

e , using at most 2(k+
�log(z + 1)� + 1) bits of advice, when 1

2z+1 ≤ a < 1
2z .

An algorithm based on techniques in [6]
As mentioned at the end of Sect. 1.3, since Opt can be viewed as accepting a prefix of
the sequence of items sorted in non-decreasing order of size, there is another obvious
type of advice to give. Let the advice be k-bit approximations to both the size, S, of
the largest item that Opts accepts and the fraction, t , of the knapsack not filled with
items of size strictly smaller than S. The approximation to S can be given using the
technique above, specifying the number of leading zeros first and then k significant
bits. For t , we simply use the first k bits after the binary point, letting t ′ be the number
represented by those k bits. The reason that it is necessary to give the fraction of the
knapsack not filled with items of at most this size is the following. Even if the exact

123

2816 Algorithmica (2024) 86:2786–2821

value of S was given, it is unknown if Opts accepts one or many items of that size,
and these “large” items could come before any smaller ones.

The algorithm, called AlgS, will accept all items that are smaller than S, which is
the optimal behavior on those items (so in the worst case for the performance ratio,
no such items arrive). Using the notation s and z as above for approximating S, we
are only interested in items of sizes between s

2z+k and s+1
2z+k and can calculate a bound

on the competitive ratio just from the algorithm’s and Opts’s performance on items
in that range. Since the algorithm does not accept all items in the worst case, we
may assume that there are enough items in this size range that it rejects some. Under

this assumption, the algorithm accepts at least
⌊

t ′/2k
(s+1)/2z+k

⌋
and Opts accepts at most

⌊
(t ′+1)/2k

s/2z+k

⌋
. For an asymptotic result, ignoring the rounding down on the algorithm’s

performance, this gives a performance ratio of at least

t ′ · s
(s + 1)(t ′ + 1)

≥ 2k · 2z+k

(2k + 1)(2z+k + 1)
≥ 22k

(2k + 1)2
.

Since we approximate both S (using 2(k+⌈ log(z+1)
⌉+1) bits) and t (using 2k+1

bits), we need a total of 4k + 2(
⌈
log(z + 1)

⌉+ 1) advice bits. This gives us:

Proposition 2 AlgS has a competitive ratio of at least 22k

(2k+1)2
, using at most 4k +

2(�log(z + 1)� + 1) bits of advice, when 1
2z+1 ≤ S < 1

2z .

The competitive ratio with this approach is better than that of the first approach, but it
also uses more advice.

Advice complexity for optimality
With respect to optimality, we note that the lower bound of log n from [6] for the
general Knapsack Problem cannot be used directly here, since the items used in their
sequences all have size 1, so the weights are very important. In contrast to the upper
bounds proven above, we prove that for optimality, the number of advice bits needed
is a function of the length, n, of the input sequence:

Theorem 12 Any algorithm with advice, solving the Unit Profit Knapsack Problem to
optimality, requires at least log(n/3) bits of advice.

Proof For any algorithm, Alg, consider the set of input sequences defined to have
length n as follows. Let k ∈ N, n = 3k, and 0 ≤ � ≤ k. Then I� consists of (in the
order listed)

• k items of size 1
k ,

• 2(k − �) items of size 1
2k ,• 2� items of size 1.

Suppose for the sake of contradiction thatAlg is optimal on all of these sequences and
never reads log(n/3) bits of advice. Opt accepts � items of size 1

k and then 2(k − �)

items of size 1
2k , completely filling up the knapsack with 2k − � items. Intuitively,

the advice needs to say how many of the first k items to accept. Since there are n/3
sequences in all and fewer than log(n/3) bits of advice, there are at least two of the

123

Algorithmica (2024) 86:2786–2821 2817

sequences, I j and I j ′ , for which Alg receives the same advice. Thus, Alg accepts
the same number, j∗, of items of size 1

k on both I j and I j ′ . Without loss of generality,
assume that j∗ �= j ′. If j∗ > j ′, then Alg can accept only 2(k − j∗) items of size
1
2k . In all, Alg(I j ′) ≤ j∗ + 2(k − j∗) < 2k − j ′ = Opt(I j ′). If j∗ < j ′, then
Alg(I j ′) ≤ j∗ + 2(k − j ′) < 2k − j ′ = Opt(I j ′). Thus, Alg is not optimal on I j ′ ,
giving a contradiction. �	

A Proofs of Minor Technical Lemmas

Proof of Lemma 1 Define 	k = Hk − ln k. First, we argue that 	k > 	k+1.
Observe that

ln(k + 1) − ln k =
∫ k+1

k

1

x
dx >

1

k + 1
,

since 1
k+1 is the smallest value we are integrating over. So, 1

k+1 − ln(k + 1) <

− ln(k).
Using this,

	k+1 = Hk+1 − ln(k + 1) = Hk + 1

k + 1
− ln(k + 1) < Hk − ln k = 	k .

By the definition of 	k ,

Hk − Hp = ln k + 	k − (ln p + 	p)

≤ ln k − ln p, since, by induction,	k ≤ 	p.

From the integral, it follows similarly that ln(p + 1) − ln p < 1
p . Thus,

ln(p + 1) − ln p < 1
p

⇔ Hp−1 − Hp = − 1
p < ln p − ln(p + 1)

⇔ Hp−1 − ln p < Hp − ln(p + 1).

Now, Hk − ln k > Hp − ln(p + 1) clearly holds for p = k, since ln is increasing.
So, by induction, using the above in the induction step, it holds for smaller p as well.
Thus, ln k − ln(p + 1) ≤ Hk − Hp for k ≥ p.

Proof of Lemma 2 We prove that e−e1−ae

a is bounded from above by e2.

The derivative of the term is ae2−ea−(e−e1−ae)

a2
= e1−ae(ea−eea+1)

a2
.

The terms a2 and e1−ae are positive. Consider the remaining term, ea − eea + 1.
For a = 0, this term is zero. The derivative of ea is e and the derivative of eea is eea+1.
For any a > 0, eea+1 > e, so ea − eea + 1 is negative. Thus, for a > 0, the derivative
of e−e1−ae

a is negative, and the term decreases with increasing a. Thus, the limit for a
going towards zero is an upper bound.

123

2818 Algorithmica (2024) 86:2786–2821

Using L’Hôpital’s rule, lima→0+ e−e1−ae

a = lima→0+ e2−ae

1 = e2.

Proof of Lemma 4

2r
√
2â(i + 1) − 2r â(i + 1) + q − 2 ≤ 0

⇔ 2r
√
2â(i + 1) − 2 + q ≤ 2r(i + 1)â

⇔
√

2(i+1)
â (2r

√
2â(i + 1) − 2 + q) ≤ 2r(i + 1)

√
2â(i + 1)

⇔ �(2r
√
2â(i + 1) − 2 + q) < 2r(i + 1)

√
2â(i + 1), since � <

√
2(i+1)

â

⇔ �q < 2r(i + 1)
√
2â(i + 1) + 2� − 2�r

√
2â(i + 1)

⇔ �q√
2â(i+1)

< 2r(i + 1) + 2�√
2â(i+1)

− 2�r

⇔ �q√
2â(i+1)

< 2r((i + 1) + �

r
√

2â(i+1)
− �)

⇔ q
2 <

(i+1)+
(

1
r
√

2â(i+1)
−1

)
�

�

r
√

2â(i+1)

.

Acknowledgements This work was supported in part by the Independent Research Fund Denmark, Natural
Sciences, grant DFF-0135-00018B. A preliminary extended abstract of some of these results was published
by the same authors as “Online Unit Profit Knapsack with Untrusted Predictions” in the 18th Scandinavian
SymposiumandWorkshops onAlgorithmTheory (SWAT),Leibniz International Proceedings in Informatics
(LIPIcs) 227, Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, 20:1–20:17, 2022. The authors
would like to thank the anonymous referees for their careful reading of a long manuscript and for valuable
suggestions.

Author Contributions The authors contributed equally to this work in all of its phases.

Funding Open access funding provided by University of Southern Denmark All authors were supported in
part by the Independent Research Fund Denmark, Natural Sciences, grant DFF-0135-00018B.

Data Availability No datasets or data repositories were used in this work.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Lykouris, T., Vassilvitskii, S.: Competitive caching with machine learned advice. J. ACM 68(4), 24–
12425 (2021)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2024) 86:2786–2821 2819

2. Purohit, M., Svitkina, Z., Kumar, R.: Improving online algorithms via ML predictions. In: 31st Annual
Conference on Neural Information Processing Systems (NeurIPS), pp. 9661–9670. Curran Associates,
Inc., Red Hook, New York (2018)

3. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin, Heidelberg (2004)
4. Cygan, M., Jeż, Ł, Sgall, J.: Online knapsack revisited. Theory Comput. Syst. 58, 153–160 (2016)
5. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Math. Program. 68,

73–104 (1995)
6. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: The online knapsack problem: Advice

and randomization. Theoret. Comput. Sci. 527, 61–72 (2014)
7. Boyar, J., Favrholdt, L.M., Kudahl, C., Larsen, K.S., Mikkelsen, J.W.: Online algorithms with advice:

a survey. ACM Comput. Surv. 50(2), 19–11934 (2017)
8. Komm, D.: An Introduction to Online Computation. Springer, Berlin, Heidelberg (2016)
9. Zeynali, A., Sun, B., Hajiesmaili, M.H., Wierman, A.: Data-driven competitive algorithms for online

knapsack and set cover. In: 35th AAAI conference on artificial intelligence (AAAI), 10833–10841.
AAAI Press, Palo Alto, California (2021)

10. Zhou, Y., Chakrabarty, D., Lukose, R.M.: Budget constrained bidding in keyword auctions and online
knapsackproblems. In: 4th internationalworkshopon internet andnetwork economics (WINE).Lecture
Notes in Computer Science, vol. 5385, pp. 566–576. Springer, Berlin, Heidelberg (2008)

11. Im, S., Kumar, R., Qaem, M.M., Purohit, M.: Online knapsack with frequency predictions. In: Pre-
Proceedings of the 34th annual conference on neural information processing systems (NeurIPS), 2733–
2743. Curran Associates, Inc., Red Hook, New York (2021)

12. Boyar, J., Favrholdt, L.M., Larsen, K.S., Nielsen, M.N.: The competitive ratio for on-line dual bin
packing with restricted input sequences. Nordic J. Comput. 8, 463–472 (2001)

13. Angelopoulos, S., Dürr, C., Jin, S., Kamali, S., Renault, M.P.: Online computation with untrusted
advice. In: 11th Innovations in Theoretical Computer Science Conference (ITCS). LIPIcs, vol. 151,
pp. 52–15215. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Saarbrücken/Wadern (2020)

14. Angelopoulos, S., Kamali, S., Shadkami, K.: Online bin packing with predictions. J. Artif. Intell. Res.
78, 1111–1141 (2023)

15. Lykouris, T., Vassilvitskii, S.: Competitive caching with machine learned advice. In: 35th international
conference on machine learning (ICML), 80, 3302–3311. PMLR, London (2018)

16. Angelopoulos, S.: Online search with a hint. Inf. Comput. 295, 105091 (2023)
17. Angelopoulos, S., Kamali, S., Zhang, D.: Online search with best-price and query-based predictions.

In: 36th AAAI conference on artificial intelligence, 36, 9652–9660 (2022)
18. Bhaskara, A., Cutkosky, A., Kumar, R., Purohit, M.: Online learning with imperfect hints. In: 37th

International Conference on Machine Learning (ICML). Proceedings of machine learning research,
vol. 119, pp. 822–831. PMLR, London (2020)

19. Lee, R., Maghakian, J., Hajiesmaili, M.H., Li, J., Sitaraman, R.K., Liu, Z.: Online peak-aware energy
scheduling with untrusted advice. ACM SIGEnergy Inf. Rev. 1(1), 59–77 (2021)

20. Medina,A.M.,Vassilvitskii, S.:Revenueoptimizationwith approximate bid predictions. In: 30th annual
conference on neural information processing systems (NIPS), pp. 1858–1866. Curran Associates, Inc.,
Red Hook, New York (2017)

21. Ahmadian, S., Esfandiari, H., Mirrokni, V., Peng, B.: Robust load balancing with machine learned
advice. J. Mach. Learn. Res. 24, 44–14446 (2023)

22. Angelopoulos, S., Kamali, S.: Contract scheduling with predictions. J. Artif. Intell. Res. 77, 396–426
(2023)

23. Azar, Y., Leonardi, S., Touitou, N.: Flow time scheduling with uncertain processing time. In: 53rd
Annual ACM SIGACT symposium on theory of computing (STOC), 1070–1080. ACM, New York
(2021)

24. Azar, Y., Leonardi, S., Touitou, N.: Distortion-oblivious algorithms for minimizing flow time. In: 33rd
ACM-SIAM symposium on discrete algorithms (SODA), 252–274. SIAM, Philadelphia (2022)

25. Balkanski, E., Gkatzelis, V., Tan, X.: Strategyproof scheduling with predictions. In: Kalai, Y.T. (ed.)
14th Innovations in Theoretical Computer Science Conference (ITCS) 2023. LIPIcs, vol. 251, pp.
11–11122. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Saarbrücken/Wadern (2023)

26. Boyar, J., Favrholdt, L.M., Kamali, S., Larsen, K.S.: Online interval scheduling with predictions. In:
18th international symposium on algorithms and data structures (WADS). Lecture Notes in Computer
Science, vol. 14079, pp. 193–207. Springer, Berlin, Heidelberg (2023)

123

2820 Algorithmica (2024) 86:2786–2821

27. Bamas, E., Maggiori, A., Rohwedder, L., Svensson, O.: Learning augmented energy minimization
via speed scaling. In: 33rd annual conference on neural information processing systems (NeurIPS),
15350–15359. Curran Associates, Inc., Red Hook, New York (2020)

28. Im, S., Kumar, R., Qaem, M.M., Purohit, M.: Non-clairvoyant scheduling with predictions. ACM
Trans. Parallel Comput. 10(4), 19:1–19:26 (2022)

29. Kumar, A., Alam, B.: Task scheduling in real time systems with energy harvesting and energy mini-
mization. J. Comput. Sci. 14(8), 1126–1133 (2018)

30. Lattanzi, S., Lavastida, T., Moseley, B., Vassilvitskii, S.: Online scheduling via learned weights. In:
31st ACM-SIAM symposium on discrete algorithms (SODA), 1859–1877. SIAM, Philadelphia (2020)

31. Li, S., Xian, J.: Online unrelated machine load balancing with predictions revisited. In: 38th Inter-
national Conference on Machine Learning (ICML). Proceedings of Machine Learning Research, vol.
139, pp. 6523–6532. PMLR, London (2021)

32. Mitzenmacher, M.: Scheduling with Predictions and the Price ofMisprediction. In: 11th Innovations in
Theoretical Computer Science Conference (ITCS). LIPIcs, vol. 151, pp. 14–11418. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Saarbrücken/Wadern (2020)

33. Gollapudi, S., Panigrahi, D.:Online algorithms for rent-or-buywith expert advice. In: 36th international
conference on machine learning (ICML). Proceedings of Machine Learning Research, vol. 97, pp.
2319–2327. PMLR, London (2019)

34. Kodialam, R.: Optimal algorithms for ski rental with soft machine-learned predictions. ArXiv (2019).
arXiv:1903.00092 [cs.DS]

35. Wang, S., Li, J.: Online algorithms for multi-shop ski rental with machine learned predictions. In:
19th international conference on autonomous agents and multiagent systems (AAMAS), 2035–2037.
International Foundation for Autonomous Agents and Multiagent Systems, Liverpool (2020)

36. Bansal, N., Coester, C., Kumar, R., Purohit, M., Vee, E.: Learning-augmented weighted paging. In:
33rd ACM-SIAM Symposium on Discrete Algorithms (SODA), 67–89. SIAM, Philadelphia (2022)

37. Indyk, P., Mallmann-Trenn, F., Mitrovic, S., Rubinfeld, R.: Online page migration with ML advice.
In: 25th international conference on artificial intelligence and statistics (AISTATS). Proceedings of
Machine Learning Research, vol. 151, pp. 1655–1670. PMLR, London (2022)

38. Jiang, Z., Panigrahi, D., Sun, K.: Online algorithms for weighted paging with predictions. ACMTrans.
Algorithms 18(4), 39:1–39:27 (2022)

39. Rohatgi,D.:Near-optimal bounds for online cachingwithmachine learned advice. In: 31stACM-SIAM
symposium on discrete algorithms (SODA), 1834–1845. SIAM, Philadelphia (2020)

40. Wei, A.: Better and simpler learning-augmented online caching. In: approximation, randomization,
and combinatorial optimization. algorithms and techniques (APPROX/RANDOM). LIPIcs, vol. 176,
pp. 60–16017. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Saarbrücken/Wadern (2020)

41. Antoniadis, A., Coester, C., Eliás, M., Polak, A., Simon, B.: Online metric algorithms with untrusted
predictions. ACM Trans. Algorithms 19(2), 19–11934 (2023)

42. Antoniadis, A., Gouleakis, T., Kleer, P., Kolev, P.: Secretary and online matching problems with
machine learned advice. Discrete Optim. 48, 100778 (2023)

43. Banerjee, S., Gkatzelis, V., Gorokh, A., Jin, B.: Online Nash social welfare maximization with pre-
dictions. In: 33rd ACM-SIAM symposium on discrete algorithms (SODA),1–19. SIAM, Philadelphia
(2022)

44. Mitzenmacher, M.: Queues with small advice. In: SIAM conference on applied and computational
discrete algorithms (ACDA), 1–12. SIAM, Philadelphia (2021)

45. Rutten, D., Mukherjee, D.: Capacity scaling augmented with unreliable machine learning predictions.
SIGMETRICS Perform. Eval. Rev. 49(2), 24–26 (2022)

46. Azar, Y., Panigrahi, D., Touitou, N.: Online graph algorithms with predictions. In: 33rd ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 35–66. SIAM, Philadelphia (2022)

47. Bamas, E., Maggiori, A., Svensson, O.: The primal-dual method for learning augmented algorithms.
In: 33rd annual conference on neural information processing systems (NeurIPS), pp. 20083–20094.
Curran Associates, Inc., Red Hook, New York (2020)

48. Lavastida, T.,Moseley,B., Ravi, R.,Xu,C.: Learnable and instance-robust predictions for onlinematch-
ing, flows and load balancing. In: 29th Annual European Symposium on Algorithms (ESA). LIPIcs,
vol. 204, pp. 59–15917. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Saarbrücken/Wadern
(2021)

49. Wei, A., Zhang, F.: Optimal robustness-consistency trade-offs for learning-augmented online algo-
rithms. In: 33rd annual conference on neural information processing systems (NeurIPS) (2020)

123

http://arxiv.org/abs/1903.00092

Algorithmica (2024) 86:2786–2821 2821

50. Mitzenmacher, M., Vassilvitskii, S.: Algorithms with predictions. In: Roughgarden, T. (ed.) Beyond
the Worst-Case Analysis of Algorithms, pp. 646–662. Cambridge University Press, Cambridge (2021)

51. Angelopoulos, S., Dürr, C., Kamali, S., Renault, M.P., Rosén, A.: Online bin packing with advice of
small size. Theory Comput. Syst. 62(8), 2006–2034 (2018)

52. Christ, M.G., Favrholdt, L.M., Larsen, K.S.: Online Multi-Coloring with Advice. Theoret. Comput.
Sci. 596, 79–91 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Online Unit Profit Knapsack with Predictions
	Abstract
	1 Introduction
	1.1 Preliminaries
	1.2 Previous Work
	1.3 Our Results

	2 Online Unit Profit Knapsack Without Predictions
	3 Threshold Algorithms
	3.1 The Adaptive Threshold Algorithm

	4 Accurate Predictions
	4.1 Positive Result–Lower Bound
	4.2 General Negative Result–Upper Bound

	5 Predictions
	5.1 Predictions with r<e
	5.1.1 Positive Result–Lower Bound
	5.1.2 General Negative Result–Upper Bound
	5.1.3 The Competitive Ratio of CAT

	5.2 Predictions with No Guarantee
	5.2.1 Positive Result–Lower Bound
	5.2.2 General Negative Result–Upper Bound

	6 Advice Complexity
	 A Proofs of Minor Technical Lemmas
	Acknowledgements
	References

