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Abstract

Let A and B be n × n matrices the entries of which are affine com-
binations of the variables a1, . . . , am, b1, . . . , bm over GF(2). Suppose
that, for each i, 1 ≤ i ≤ m, the term aibi is an element of the product
matrix C = A · B. What is the maximum value that m can have
as a function of n? This question arises from a recent technique for
improving the communication complexity of zero-knowledge proofs.

The obvious upper bound of n2 is improved to n2/ 3
√
3+O(n). Tighter

bounds are obtained for smaller values of n. The bounds for n = 2,
n = 3, and n = 4 are tight.

1 Introduction

The problem described in the abstract and discussed in this paper is mo-
tivated by recent results in cryptography. A new technique for improving
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the communication complexity of zero-knowledge proofs for circuit satisfi-
ability was presented in [1]. The key idea is that the Prover shows that
all the inputs and outputs to the AND gates are correct by showing that a
matrix multiplication is correct. Suppose that the inputs to m AND gates
are (a1, b1), (a2, b2), ..., (am, bm), and that the outputs are c1, c2, ..., cm, re-
spectively. Given encryptions for the ai’s, bi’s, and ci’s, the Prover is trying
to show that the following equalities hold in GF(2): a1b1 = c1, a2b2 =
c2, ..., ambm = cm. The variables a1, a2, ..., am are put in an n × n matrix
A which has zeros as its remaining elements. The variables b1, b2, ..., bm are
put in an n × n matrix B which also has zeros as its remaining elements.
These variables and zeros are placed so that every one of the ci’s is contained
somewhere in the product matrix C = A ·B. For example, if the ai’s and the
bi’s are on the diagonals of their respective matrices, and if the other entries
of these matrices are 0, the ci’s will be on the diagonal of the product. The
usefulness of the technique in [1], however, depends on m being significantly
larger than n; the larger, the better.

The smallest interesting example has m = 6 and n = 3:







a1 a2 0
a3 0 a4
0 a5 a6





 ·







b3 b1 0
b5 0 b2
0 b6 b4





 =







a1b3 + a2b5 a1b1 a2b2
a3b3 a3b1 + a4b6 a4b4
a5b5 a6b6 a5b2 + a6b4





 .

A construction in [1] gives the values m = 32t and n = 8t for any positive
integer t. Thus, it is possible to put m = n5/3 entries in an n× n matrix if n
is a power of 8. Although this is the best known result in the practical range,
an asymptotic improvement of theoretical interest, also described in [1], has
been discovered by Szemerédi [3], using a result of [2]. It is possible to put m
entries in matrices of size n×n, where n ≤ (

√
m)1+εm and εm = 4

√
2/
√
lgm ,

which is better than the other construction, provided that m ≥ 2128. Since
εm approaches zero as m approaches infinity, m is nearly linear in n2, the
number of entries in the matrix.

In all these examples, the matrix A contains only ai’s and zeros and the
matrix B contains only bi’s and zeros. This restriction is neither stated
nor necessary for the technique described in [1]. In fact, because of various
properties of the encryption scheme used, the entries in both A and B could
also have the form

∑k
j=1 xj where each xj ∈ {a1, a2, ..., am, b1, b2, ..., bm, 1}.
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Thus, these entries can be affine combinations of the variables. For example,
in 2× 2 matrices, one could have:
(

a1 + a2 + b1 + 1 b1
a1 + a2 a1

)

·
(

b1 b2
a2 b2

)

=

(

a1b1 a1b2 + a2b2 + b2
a1b1 + a2b1 + a1a2 a2b2

)

.

This example just gives m = n = 2, which is no improvement over what
can be done without using affine combinations. In fact, there are no known
examples where removing the original restrictions does give any improvement.

For a given n, let M(n) denote the maximum value that m can have. Then
M(n) ≤ n2. In this paper, we improve this bound to n2/ 3

√
3 + O(n). This

bound is definitely not tight for small n. We prove other results which give
tighter bounds when n is small, and exact bounds for n = 2, n = 3, and
n = 4.

2 Asymptotic Bounds

Given a matrix C, choose k ≥ 2 rows and ⌊n/k⌋ + 1 columns and consider
the k×(⌊n/k⌋+1) submatrix of C consisting of the intersection of these rows
and columns. In this section, we show that no such submatrix can consist
entirely of distinct ci’s and use this fact to obtain an upper bound on M(n).

In order to prove this, we use a result from the study of straight-line programs
over fields. These are programs in which the ith statement has the form
Vi ← Uj or the form Vi ← Uj ⊙ Uk, where each of Uj and Uk is either an
input to the program, some variable Vl with l < i, or a field constant, and ⊙
is addition or multiplication. The next lemma follows from results of [5]. The
proof given here is more direct and it is included for the sake of completeness.

Lemma 1 Let a1, a2, ..., ak and b1, b2, ..., bk be independent variables over
GF(2). Then any straight-line program for computing the inner product
∑k

i=1 aibi requires at least k (nonscalar) multiplications.

Proof Suppose the claim is false. Consider the smallest value k for which
there is a straight-line program P computing the inner product

∑k
i=1 aibi

using less than k multiplications. Since even the product a1b1 cannot be
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computed without any multiplications, P must contain at least one (non-
scalar) multiplication. Consider the first statement z ← x · y in P that
involves a multiplication. Both x and y are affine combinations of one or
more of the variables. Without loss of generality, say x = ak + x′ where x′ is
a constant or an affine combination of other variables.

Construct a straight-line program P ′ from P by prepending the statements
bk ← 0 and ak ← x′ and replacing the statement z ← x · y by z ← 0.
Then P ′ computes

∑k−1
i=1 aibi. None of the new statements in P ′ involve any

multiplications, so P ′ uses fewer than k−1 multiplications. This contradicts
the minimality of k. ✷

Lemma 2 Let a1, a2, ..., am and b1, b2, ..., bm be distinct variables over GF(2),
and suppose ci = aibi for 1 ≤ i ≤ m. Let A, B, and C be n×n matrices such
that A ·B = C. Suppose that the entries of A and B are affine combinations
of the variables. If there exists an s×t submatrix of C in which every element
is distinct and is one of the ci’s, then st ≤ n. Furthermore, if st = n, then
no other element in any of those s rows or t columns of C is a different ci.

Proof Consider an s×t submatrix of C consisting of the intersection of rows
r1, r2, ..., rs and columns q1, q2, ..., qt and which contains the entries c1, . . . , cst.
Since C = A · B,

s×t
∑

i=1

aibi =
s×t
∑

i=1

ci =
s
∑

j=1

t
∑

l=1

C[rj, ql]

=
s
∑

j=1

t
∑

l=1

n
∑

k=1

A[rj , k] ·B[k, ql]

=
s
∑

j=1

n
∑

k=1

A[rj, k] ·
(

t
∑

l=1

B[k, ql]

)

=
n
∑

k=1





s
∑

j=1

A[rj , k]



 ·
(

t
∑

l=1

B[k, ql]

)

.

Each of the terms A[rj, k] and B[k, ql] is an affine combination of the ai’s and
bi’s, so the sums

∑s
j=1 A[rj, k] and

∑t
l=1B[k, ql] can be computed without any

multiplications. Thus the right hand side can be computed by a straight-line
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program with only n multiplications. By lemma 1, the left hand side requires
at least st multiplications. Thus, st ≤ n.

Now assume st = n. Then, for each k ∈ {1, . . . , n}, ∑s
j=1 A[rj, k] is an

affine combination of the variables a1, . . . , an, b1, . . . , bn. To see why, suppose
∑s

j=1 A[rj, k
′] = an+1+d, where k′ ∈ {1, . . . , n} and d is an affine combination

of variables excluding an+1. Let A
′, B′, and C ′ be the matrices obtained by

replacing all occurrences of an+1 by d in A, B, and C, respectively. Then
A′ · B′ = C ′. Furthermore, since C[rj , ql] does not contain an+1, C

′[rj, ql] =
C[rj , ql] for all j ∈ {1, . . . , s}, l ∈ {1, . . . , t}. Thus

s×t
∑

i=1

aibi =
s
∑

j=1

t
∑

l=1

C[rj, ql]

=
s
∑

j=1

t
∑

l=1

C ′[rj , ql]

=
n
∑

k=1





s
∑

j=1

A′[rj, k]



 ·
(

t
∑

l=1

B′[k, ql]

)

.

Since
∑s

j=1 A[rj, k
′] = an+1 + d, it follows that

∑s
j=1A

′[rj, k
′] = 0. But this

implies that the right hand side can be computed by a straight-line program
using only n− 1 multiplications, contradicting lemma 1.

Similarly,
∑t

l=1B[k, ql] is an affine combination of the variables a1, . . . , an, b1, . . . , bn,
for each k ∈ {1, . . . , n}.
In fact, for each j ∈ {1, . . . , s} and k ∈ {1, . . . , n}, A[rj , k] is, itself, an affine
combination of the variables a1, . . . , an, b1, . . . , bn. Suppose, to the contrary,
that A[r, k′] = an+1 + d, where r ∈ {r1, . . . , rs}, k′ ∈ {1, . . . , n}, and d is an
affine combination of variables excluding an+1. Let e =

∑s
j=1 A[rj, k

′] and let
A′ and A′′ be obtained by replacing all occurrences of an+1 in A by 0 and
e, respectively. Define B′, B′′, C ′, and C ′′ analogously. Then A′ · B′ = C ′

and A′′ · B′′ = C ′′. Since
∑s

j=1A[rj , k] and
∑t

l=1 B[k, ql] are not functions of
an+1, for any k ∈ {1, . . . , n}, and C[ri, ql] is not a function of an+1, for any
j ∈ {1, . . . , s} and l ∈ {1, . . . , t},

∑s
j=1 A[rj, k] =

∑s
j=1A

′[rj, k] =
∑s

j=1 A
′′[rj, k],

∑t
l=1 B[k, ql] =

∑t
l=1B

′[k, ql] =
∑t

l=1B
′′[k, ql], and

C[rj, ql] = C ′[rj, ql] = C ′′[rj, ql].
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Thus,
t
∑

l=1

n
∑

k=1

A′[r, k] ·B′[k, ql] =
t
∑

l=1

C ′[r, ql]

=
t
∑

l=1

C ′′[r, ql]

=
t
∑

l=1

n
∑

k=1

A′′[r, k] ·B′′[k, ql]

=
n
∑

k=1

A′′[r, k] ·
(

t
∑

l=1

B′′[k, ql]

)

=
n
∑

k=1

A′′[r, k] ·
(

t
∑

l=1

B′[k, ql]

)

=
t
∑

l=1

n
∑

k=1

A′′[r, k] ·B′[k, ql]

and A′′[r, k′] +
s
∑

j=1

rj 6=r

A′[rj, k
′] = A′′[r, k′] + A′[r, k′] +

s
∑

j=1

A′[rj, k
′]

= A′′[r, k′] + A′[r, k′] +
s
∑

j=1

A[rj, k
′]

= (e+ d) + d+ e = 0.

From these facts, it follows that
s×t
∑

i=1

aibi =
s
∑

j=1

t
∑

l=1

n
∑

k=1

A′[rj, k] · B′[k, ql]

=
t
∑

l=1

n
∑

k=1

A′[r, k] ·B′[k, ql] +
s
∑

j=1

rj 6=r

t
∑

l=1

n
∑

k=1

A′[rj, k] ·B′[k, ql]

=
t
∑

l=1

n
∑

k=1

A′′[r, k] ·B′[k, ql] +
s
∑

j=1

rj 6=r

t
∑

l=1

n
∑

k=1

A′[rj, k] · B′[k, ql]

=
n
∑

k=1









A′′[r, k] +
s
∑

j=1

rj 6=r

A′[rj, k]









·
(

t
∑

l=1

B′[k, ql]

)
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=
n
∑

k=1

k 6=k′









A′′[r, k] +
s
∑

j=1

rj 6=r

A′[rj, k]









·
(

t
∑

l=1

B′[k, ql]

)

.

But this contradicts lemma 1, since the right hand side can be computed by
a straight-line program using only n− 1 multiplications.

Similarly, for each l ∈ {1, . . . , t} and k ∈ {1, . . . , n}, B[k, ql] is an affine
combination of the variables a1, . . . , an, b1, . . . , bn.

If an+1bn+1 = C[r, q] =
∑n

k=1A[r, k] ·B[k, q], then there exists k ∈ {1, . . . , n}
such that an+1 is contained in A[r, k] and bn+1 is contained in B[k, q], or vice
versa. This implies that r 6∈ {r1, . . . , rs} and q 6∈ {q1, . . . , ql}. ✷

Given an n × n matrix C with m distinct ci’s, construct an n × n matrix
D with m ones (corresponding to distinct ci’s) and n2 − m zeros. If C is
the product of two matrices the entries of which are affine combinations of
the variables a1, . . . , am, b1, . . . , bm, we say that the zero-one matrix D is a
representative matrix.

Corollary 1 If an n× n representative matrix has an s× t submatrix con-
taining only ones, then st ≤ n. Furthermore, if st = n, then no other element
in any of those s rows or t columns is one.

To prove an upper bound on M(n), it suffices to prove an upper bound on
the maximum number of ones in any n × n representative matrix. This is
a special case of the problem: determine the least positive integer ki,j(m,n)
such that if a zero-one matrix of size m× n contains ki,j(m,n) ones, then it
must have an i× j submatrix containing only ones. This is a generalization
of a problem originally posed by Zarankiewicz [10]. The first upper bound
on this problem,

ki,j(m,n) ≤ 1 + (i− 1)n+ ⌊(j − 1)1/in1−1/im⌋,
was given by Hyltén-Cavallius [9], using the methods of Kövari, Sós, and
Turán [8]. This has been improved slightly by others, including Guy and
Znám [6] and Roman [7]. Tighter results have been found for small values of
i and j. In particular, Hyltén-Cavallius [9] has shown that

k2,j(m,n) ≤ 1 + ⌊1
2
n+

√

(j − 1)nm(m− 1) + 1
4
n2⌋.
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All of these upper bounds are obtained using Dirichlet’s pigeonhole principle
as the main tool, and we use the same techniques in lemma 5.

The following lemmas give upper bounds on the number of ones in an n× n
representative matrix and thus upper bounds on M(n).

Lemma 3 If an n × n representative matrix D contains more than (1 −
1/k)n2 − (k − 2)n ones, then it contains no k × ⌈n/k⌉ submatrix consisting
entirely of ones.

Proof If n is not divisible by k, then k⌈n/k⌉ > n, so, by corollary 1, D
does not contain a k×⌈n/k⌉ submatrix consisting entirely of ones. Therefore
suppose that n is divisible by k andD contains a k×n/k submatrix consisting
entirely of ones. Then, by corollary 1, none of the k(n−n/k) other elements
in the same rows and none of the (n − k)n/k other elements in the same
columns are ones. Hence D contains at most n2 − nk + n − n2/k + n =
(1− 1/k)n2 − (k − 2)n ones. ✷

Lemma 4 Suppose D is an n× n representative matrix, with n ≥ 2. Then

D contains at most n
2

(

1 +
√

1 + 4(⌈n/2⌉ − 1)(n− 1)
)

= n2/
√
2+O(n) ones.

Proof By lemma 3, we may assume that D does not contain a 2×⌈n/2⌉ sub-
matrix consisting entirely of ones. Thus, we can apply the result of Hyltén-
Cavallius [9] on k2,j(m,n), setting j = ⌈n/2⌉ and m = n. Since k2,⌈n/2⌉(n, n)
is the number of ones necessary to ensure that a 2 × ⌈n/2⌉ submatrix con-
taining only ones exists, the value we need is one less. ✷

This result implies that M(2) ≤ 2, M(3) ≤ 6, and M(4) ≤ 9. The lower
bounds, M(2) ≥ 2 and M(3) ≥ 6, follow from the examples in the introduc-
tion. The following example, in which each * represents some uninteresting
bilinear form, gives that M(4) ≥ 9.











a1 a2 a3 0
0 a4 0 a5
a6 0 0 a7
0 0 a8 a9











·











b1 0 0 b6
0 b2 0 b4
0 0 b3 b8
b9 b7 b5 0











=











a1b1 a2b2 a3b3 ∗
∗ ∗ a5b5 a4b4
∗ a7b7 ∗ a6b6

a9b9 ∗ ∗ a8b8











.
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Thus M(2) = 2, M(3) = 6, and M(4) = 9.

The proof of lemma 4 only used corollary 1 for s = 2. The same technique
can also be applied for other values of s. Using the standard pigeonhole
technique, the value s = 3 gives the best result asymptotically. The results
of [9], [6], and [7] all give the asymptotic result we obtain in the following
lemma, but since our problem is less general, the result given here is slightly
tighter.

Lemma 5 Suppose D is an n× n representative matrix, with n ≥ 4. Let

u = 1
2
(⌈n/3⌉ − 1) (n− 1)(n− 2) and v =

√

u2 − 1/27.

Then D contains at most

n
(

1 + 3
√
u+ v + 3

√
u− v

)

= n2/
3
√
3 +O(n)

ones.

Proof By lemma 3, we may assume that D does not contain a 3 × ⌈n/3⌉
submatrix consisting entirely of ones. Consider any set of three rows. Then
the number of columns in which all three rows have value one is no more
than ⌈n/3⌉ − 1. Let T be the sum of this quantity, taken over all

(

n
3

)

sets of

three rows. Then T ≤ (⌈n/3⌉ − 1)
(

n
3

)

.

For 1 ≤ i ≤ n, let ki denote the number of ones in the ith column. Then
m =

∑n
i=1 ki is the number of ones in the entire matrix and T =

∑n
i=1

(

ki
3

)

.

By convexity, T ≥ n
(

m/n
3

)

. This implies that (⌈n/3⌉ − 1) (n − 1)(n − 2) ≥
m
n

(

m
n
− 1

) (

m
n
− 2

)

. Let x = m/n − 1. Then x3 − x − 2u ≤ 0. Since

u2− 1/27 > 0 for n ≥ 4, the formula for the roots of cubic equations implies

that x ≤ 3
√
u+ v + 3

√
u− v and, hence, m ≤ n

(

1 + 3
√
u+ v + 3

√
u− v

)

. ✷

For some small values of n, the upper bound onM(n) implied by the following
result is better. Like lemma 4, it only uses corollary 1 for s = 2.

Lemma 6 Suppose D is an n× n representative matrix, with n ≥ 2. Then
D contains at most K = (n−1) (⌈3n/2⌉ − 2)− (n−2) (⌈3n/4⌉ − 1)+3 ones.
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Proof For 1 ≤ i ≤ n, let ki denote the number of ones in the ith row.
Without loss of generality, assume ki ≥ ki+1 for 1 ≤ i < n.

If k1 ≤ ⌈3n/4⌉ − 2, then the total number of ones in D is

n
∑

i=1

ki ≤ n (⌈3n/4⌉ − 2) ≤ K.

Therefore, assume k1 ≥ ⌈3n/4⌉ − 1.

If any row, other than the first, contains ⌈3n/2⌉ − k1 ones, then D contains
a 2 × ⌈n/2⌉ submatrix consisting entirely of ones. Thus, by lemma 3, we
may assume that no row, other than the first, contains more than ⌈3n/2⌉ −
k1 − 1 ones. Let s be the number of rows which contain exactly this many
ones. Then the total number of ones in the matrix is bounded by k1 +
s (⌈3n/2⌉ − k1 − 1) + (n − s − 1) (⌈3n/2⌉ − k1 − 2) which equals s − (n −
2)k1 + (n− 1) (⌈3n/2⌉ − 2).

The s rows must have ones where row one has zeros. By corollary 1, we must
have that s(n− k1) ≤ n, so the number of ones in the matrix is bounded by
⌊ n
n−k1
⌋ − (n− 2)k1 + (n− 1) (⌈3n/2⌉ − 2) ≤ 3− (n− 2) (⌈3n/4⌉ − 1) + (n−

1) (⌈3n/2⌉ − 2). ✷

The following examples show that lemma 4 gives a tight bound for the prob-
lem of putting as many ones as possible in a matrix without violating the
conditions in corollary 1, for n = 5 and n = 8. Ad hoc arguments show that
the second matrix, with 21 ones, has the largest possible number of ones for
n = 6, and the third matrix, with 31 ones, has the largest possible number
of ones for n = 7.

















0 1 1 1 1
1 1 1 0 0
1 1 0 1 0
1 0 1 0 1
1 0 0 1 1





































1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 1 1 1
1 0 1 0 1 0
0 1 1 0 0 1
1 0 0 1 0 1















































1 1 1 1 1 0 0
1 1 1 0 0 1 1
1 0 0 1 1 1 1
1 0 1 0 1 0 1
0 1 0 1 1 0 1
0 0 1 1 0 1 1
0 1 1 0 1 1 0
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1 1 1 1 1 0 0 0
1 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1
1 0 1 1 0 0 1 1
0 1 1 0 1 1 0 1
1 0 0 0 1 1 1 1
0 1 0 1 1 0 1 1
0 0 1 1 1 1 1 0































Perhaps tighter results could be obtained by considering the k × (⌊n/k⌋ +
1) submatrices for all k ≥ 2, simultaneously, but this seems to be a hard
problem. However, even if we could exactly determine the maximum number
of ones that can be in an n×nmatrix that does not contain any k×(⌊n/k⌋+1)
submatrix consisting only of ones, for all k ≥ 2, we might still not have tight
upper bounds for our original problem. For example, the best known lower
bound for M(5) is 12, though it is possible to put 16 ones in a 5× 5 matrix
satisfying the conditions of corollary 1. It seems that other techniques might
be necessary to prove exact bounds. In the next section, we demonstrate
some other techniques which could be useful.

3 A tight bound for 2× 2 matrices

In this section, we prove that M(2) ≤ 2 using different techniques. The
example in the introduction shows that this upper bound is tight.

Notice that a function that can be expressed as an affine combination of the
variables x1, x2, ..., xk over GF(2) is either the constant 0 or 1 or a parity
function of a subset of those variables. To prove the upper bound, we first
need to develop some properties of the product of two such functions.

Let f, g : {0, 1}k → {0, 1} be constant or parity functions. Then f(x1, . . . , xk) =
f0+

∑k
i=1 fixi and g(x1, . . . , xk) = g0+

∑k
i=1 gixi for some f0, . . . , fk, g0, . . . , gk ∈

{0, 1}. Let ~0 ∈ {0, 1}k denote the all zero vector and, for any subset
S ⊆ {1, . . . , k}, let ~0(S) ∈ {0, 1}k denote the vector such that

~0
(S)
i =

{

1 if i ∈ S
0 if i 6∈ S.
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An assignment of a value in {0, 1}k to x1, x2, ..., xk will be called an input.

Lemma 7 If f · g = 1, then f = g = 1.

Proof Suppose f · g = 1. Since 1 = (f · g)(~0) = f(~0) · g(~0) = f0g0, it follows
that f0 = g0 = 1.

Now consider i ∈ {1, . . . , k}. Since 1 = (f · g)(~0({i})) = (fi + f0)(gi + g0) =
(fi + 1)(gi + 1), it follows that fi = gi = 0. Thus f = g = 1. ✷

Lemma 8 If f , g, and h are parity functions and f · g = h, then f = g = h.

Proof Since f , g and h are parity functions, they are satisfied by (i.e.
have value 1 for) exactly half the inputs. But the inputs that satisfy h are
the inputs that satisfy both f and g. Thus, the inputs that satisfy h are
contained in the set of inputs that satisfy f , and in the set of inputs that
satisfy g. Therefore, f = h and g = h. ✷

Lemma 9 If f and f ′ are parity functions and g and g′ are either constant
or parity functions such that f · g + f ′ · g′ = 1, then

f = f ′ + 1,
g = f or g = 1, and
g′ = f ′ or g′ = 1.

Proof Since f and f ′ are parity functions, they are satisfied by exactly half
the inputs. The inputs that satisfy f · g are a subset of those that satisfy f ;
thus f · g is satisfied by at most half the inputs. This is also true for f ′ · g′.
But f · g+ f ′ · g′ = 1, so every input satisfies either f · g or f ′ · g′. Therefore,
f · g and f ′ · g′ are each satisfied by exactly half the inputs.

For f · g to be satisfied for exactly half the inputs, it must be the case that g
is satisfied by all inputs that satisfy f . This implies that f · g = f . If g 6= 1,
then by lemma 8, f = g. Similarly, f ′ · g′ = f ′ and either g′ = f ′ or g′ = 1.
Hence, 1 = f · g + f ′ · g′ = f + f ′, so f = f ′ + 1. ✷

Theorem 1 M(2) ≤ 2.
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Proof Let

A =

[

f11 f12
f21 f22

]

and B =

[

g11 g12
g21 g22

]

,

where f11, f12, f21, f22, g11, g12, g21, and g22 are constant or parity functions of
the variables a1, a2, a3, b1, b2, b3. Suppose, to obtain a contradiction, that a1b1,
a2b2, and a3b3 are three of the four entries in the product matrix C = A ·B.
Without loss of generality, we may assume that

f11 · g11 + f12 · g21 = a1b1,

f11 · g12 + f12 · g22 = a2b2, and

f21 · g12 + f22 · g22 = a3b3.

Consider the functions f ′
11, f

′
12, f

′
21, f

′
22, g

′
11, g

′
12, g

′
21, and g′22 that result from

setting a1 = b1 = a3 = b3 = 1. These functions are also constant or parity
functions. Now

f ′
11 · g′11 + f ′

12 · g′21 = 1

f ′
11 · g′12 + f ′

12 · g′22 = a2b2, and

f ′
21 · g′12 + f ′

22 · g′22 = 1.

If f ′
11 = 0, then f ′

12 · g′21 = 1; so by lemma 7, f ′
12 = g′21 = 1. This implies

a2b2 = g′22, which is impossible, since a2b2 is neither a constant nor a parity
function. Thus f ′

11 6= 0. Similarly, f ′
12, g

′
12, g

′
22 6= 0.

If f ′
11, f

′
12 6= 1, then, by lemma 9, f ′

12 = f ′
11+1. Similarly, if g′12, g

′
22 6= 1, then

g′22 = g′12 + 1. If both these equations are true, then

a2b2 = f ′
11 · g′12 + f ′

12 · g′22
= f ′

11 · g′12 + (f ′
11 + 1) · (g′12 + 1)

= 1 + f ′
11 + g′12.

This is impossible, since 1+f ′
11+ g′12 is a constant or parity function. There-

fore, at least one of f ′
11, f

′
12, g

′
12, and g′22 is 1. Without loss of generality, say

f ′
11 = 1. Then a2b2 = g′12 + f ′

12 · g′22.
Now either g′12 = 1 or g′22 = 1. Otherwise, by lemma 9, a2b2 = g′12 + f ′

12 ·
(g′12 + 1) or, equivalently, a2b2 + (f ′

12 + 1) · (g′12 + 1) = 1. But this would
contradict lemma 9, since a2, b2, g

′
12 + 1 6= 0, 1 and b2 6= a2.
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Furthermore, g′22 6= 1 or else a2b2 = g′12 + f ′
12. This is impossible because

g′12 + f ′
12 is a constant or parity function. Therefore, g′12 = 1.

Then a2b2 = 1+ f ′
12 · g′22 or, equivalently, a2b2 + f ′

12 · g′22 = 1. Since a2 6= 0, 1
and b2 6= 1, a2, it follows from lemma 9 and the commutativity of f ′

12 and
g′22, that neither f

′
12 nor g

′
22 can be parity functions; thus, they are constant.

But this implies that a2b2 is also constant, which it is not. Hence M(2) ≤ 2.

✷

4 Conclusion

The following theorem summarizes the results of sections 2 and 3.

Theorem 2 Let u = 1
2
(⌈n/3⌉ − 1) (n−1)(n−2) and v =

√

u2 − 1/27. Then
for n ≥ 4,

M(n) ≤ n
(

1 + 3
√
u+ v + 3

√
u− v

)

= n2/
3
√
3 +O(n).

In addition, M(2) = 2, M(3) = 6, and M(4) = 9.

The above theorem states the best asymptotic results, but for some small
values of n, lemmas 4 and 6 give better results, as the following table shows.
The theorem gives the best results for larger values of n than those shown in
the table.
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n 1 2 3 4 5 6 7 8 9 10

Lemma 4 – 2 6 9 16 22 33 40 55 65
Lemma 5 – – – 12 17 23 35 43 53 70
Lemma 6 – 4 7 11 18 22 32 43 57 64

n 11 12 13 14 15 16 17 18 19 20

Lemma 4 83 95 117 130 156 172 201 219 251 271
Lemma 5 82 95 118 134 150 179 198 217 252 274
Lemma 6 81 99 120 130 154 179 207 220 251 283

n 21 22 23 24 25 26 27 28 29 30

Lemma 4 307 330 369 393 436 463 510 538 588 619
Lemma 5 297 337 363 390 435 465 495 546 579 612
Lemma 6 318 334 372 411 453 472 517 563 612 634

n 31 32 33 34 35 36 37 38 39 40

Lemma 4 673 706 763 798 859 896 960 999 1067 1109
Lemma 5 669 705 742 804 844 884 952 995 1039 1112
Lemma 6 686 739 795 820 879 939 1002 1030 1096 1163

n 41 42 43 44 45 46 47 48 49 50

Lemma 4 1180 1223 1298 1344 1422 1470 1552 1602 1687 1739
Lemma 5 1159 1207 1285 1335 1386 1471 1524 1579 1668 1726
Lemma 6 1233 1264 1337 1411 1488 1522 1602 1683 1767 1804
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