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This is a contribution to the ongoing study of properties of performance measures for

online algorithms. It has long been known that competitive analysis suffers from draw-

backs in certain situations, and many alternative measures have been proposed. More

systematic comparative studies of performance measures have been initiated recently,

and we continue this work, considering competitive analysis, relative interval analysis,

and relative worst order analysis on the frequent items problem, a fundamental online

streaming problem.
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1. Introduction

It has been known since its introduction that competitive analysis does not always

give good results [13] and many alternative performance measures have been pro-

posed for analyzing online algorithms. However, as a general rule, these alternatives

have been fairly problem specific and most have only been compared to competitive

analysis. A more comprehensive study of a larger number of performance measures

applied to the same online problem was initiated in [6], where a simple k-server

problem was investigated, and this line of work has been continued in [7], consid-

ering the problem of online searching. Continuing this line of work, we would like
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to produce complete and tight results for the algorithms studied. For that reason,

we focus on a fairly simple combinatorial problem and on simple algorithms for its

solution.

The analysis of problems and algorithms for streaming applications, treating them

as online problems, was started by Becchetti and Koutsoupias [2]. In online stream-

ing, the items must be processed one at a time by the algorithm, making some

irrevocable decision in the processing of each item, using a small fixed amount of

memory. In the frequent items problem [9], an algorithm must store an item, or

more generally a number of items, in a buffer, and the objective is to maintain

the items appearing most frequently in the entire stream. This problem has been

studied by Giannakopoulos and Koutsoupias [11]. In addition to analyzing deter-

ministic algorithms using competitive analysis, they proved lower bounds which also

hold for randomized algorithms against oblivious adversaries. They also analyzed

algorithms using the distributional adversarial model, where the adversary, instead

of producing an input stream, selects a probability distribution on the universe of

elements. Here, since we are aiming for tight results comparing different perfor-

mance measures, for simplicity, we consider only simple deterministic algorithms

and a buffer of size one. Giannakopoulos and Koutsoupias [11] also concentrated

on a buffer of size one, but have some lower bound results for general larger buffer

sizes. We analyze the frequent items problem using relative interval analysis [10]

and relative worst order analysis [4]. In addition, for the specific models considered

here, we tighten the competitive analysis results from [11].

We develop results for a finite universe of items, but we also consider the unbounded

case, where we could keep seeing new items no matter how long the stream is. For

this case, we obtain results which are functions of the input length. In order to

compare algorithms, we consider the constants in front of the leading term. In this

paper, we name this competitive function and give a formal definition in order to

be able to state our results clearly, without ambiguity. These ideas are also used to

generalize relative worst order analysis.

Note that our contribution is towards understanding performance measures, rather

than algorithmic improvements for the online streaming problem. A dedicated study

of the online streaming problem for the sake of this problem alone would likely be

directed towards more evolved algorithms than considered here and buffer sizes

larger than one.

2. Preliminaries

The frequent items problem is a streaming problem, but as usual in online algo-

rithms, we use the term sequence or input sequence to refer to a stream. We denote

an input sequence by I = a1, a2, . . . , an, where the items ai are from some universe

U . We may refer to the index also as the time step. In this context, the size of the
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universe U is very crucial. The universe can be finite or it can be unbounded as

in [11]. In the bounded case, we denote the size of U by N . We study both cases

and refer to them as the frequent items problem with finite universe (denoted FIF)

and the frequent items problem with unbounded universe (denoted FIU).

We consider the simplest possible set up for the FIF and FIU problems: An algo-

rithm has a buffer with space for one item. When processing an item, the algorithm

can either discard the item or replace the item in the buffer by the item being pro-

cessed. The objective is to keep the most frequently occurring items in the buffer,

where frequency is measured over the entire input, i.e., when an algorithm must

make a decision, the quality of the decision also depends on items not yet revealed

to the algorithm. We define this objective function formally:

Given an online algorithm A for this problem, we let sAt denote the item in the

buffer at time step t. We may omit the superscript when it is clear from the context

which algorithm we discuss.

Given an input sequence I and an item a ∈ U , the frequency of the item is defined

as fI(a) = nI(a)
n , where nI(a) = |{i | ai = a}| is the number of occurrences

of a in I. The objective is to maximize the aggregate frequency [11], defined by

FA(I) =
∑n

t=1 fI(s
A
t ), i.e., the sum of the frequencies of the items stored in the

buffer over the time.

When the same item occurs in two consecutive time steps, we refer to that as a

repeated item. In the case of the FIF problem, since N = 1 is a trivial case, we

always assume N ≥ 2.

We compare the quality of the achieved aggregate frequencies of three different

deterministic online algorithms from [11]: the naive algorithm (Nai), the eager al-

gorithm (Eag), and the majority algorithm (Maj). All three are practical streaming

algorithms, being simple and using very little extra space. We study them for both

the FIF and FIU problems. Recall that we consider a scenario where the buffer has

room for only one item.

Definition 1. [Nai] Nai buffers every item as it arrives, i.e., sNai
t = at for all

t = 1, 2, . . . , n.

Eag switches mode upon the detection of the first repeated item in the sequence.

Definition 2. [Eag] Initially, Eag buffers every item as it arrives. If it finds a

repeated item, then it keeps that item until the end, i.e., let

t∗ = min
1≤t≤n−1

{t | at = at+1},

if such a t exists, and otherwise t∗ = n. Then Eag is the algorithm with sEagt = at
for all t ≤ t∗ and sEagt = at∗ for all t > t∗.
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Definition 3. [Maj] Maj keeps a counter along with the buffer. Initially, the

counter is set to zero. If the counter is zero, then Maj evicts the item currently

in the buffer and instead buffers the arriving item and sets the counter to one. Oth-

erwise, the content of the buffer does not change, but if the arriving item is the same

as the one currently buffered, Maj increments the counter by one, and otherwise

decrements it by one.

As an example, consider the sequence in Fig. 1 and the item in the buffer after each

item is processed for the three different algorithms:

Sequence 1 2 3 2 2 1 4 4 1 4 2 3 5

Nai 1 2 3 2 2 1 4 4 1 4 2 3 5

Eag 1 2 3 2 2 2 2 2 2 2 2 2 2

Maj 1 1 3 3 2 2 4 4 4 4 4 4 5

Maj counter 1 0 1 0 1 0 1 2 1 2 1 0 1

Fig. 1. Example buffer behavior for the three algorithms. The last line shows the value of Maj’s

counter immediately after the item has been processed.

Finally, as usual in online algorithms, we let Opt denote an optimal offline algo-

rithm. Opt is used in competitive analysis as a benchmark. If A is an algorithm,

we let A(I) denote the result, the aggregate frequency, of the algorithm on the

sequence I, i.e., A(I) = FA(I).

In comparing algorithms using a particular performance measure, it is useful to find

families of sequences where one algorithm does well and the other does poorly. In

comparing these three online algorithms, we repeatedly use the same three families

of sequences; En, on which Eag performs particularly poorly for both the FIF and

FIU problems, and Wn and Wn,r, on which Maj performs particularly poorly. Wn

is intended for FIU problems and Wn,r for FIF problems, where r depends on the

universe size N . Before considering the different performance measures, one at a

time, we first define these families of sequences and consider the performance of

each algorithm on each family.

Definition 4. For an arbitrary universe U , we define the sequences of length n:

En = a, a, b, b, . . . , b,

where a, b ∈ U and there are n− 2 copies of b, and

Wn =

{

b1, b0, b2, b0, . . . , bn
2
, b0 for even n

b1, b0, b2, b0, . . . , b⌊n
2
⌋, b0, b⌈n

2
⌉ for odd n,

where all bi ∈ U . For a finite universe U of size N , we define

Wn,r = (b1, b0)
r, (b2, b0)

r, . . . , (bN−1, b0)
r,
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where all bi ∈ U , r is any positive integer indicating r repetitions, and n = 2r(N−1).

The four algorithms, including Opt, obtain the aggregate frequencies below on

these three families of sequences. The arguments are simple, but fundamental, and

also serve as an introduction to the heuristic behavior of these algorithms.

Proposition 5. The algorithms’ results on En, Wn, and Wn,r are as in Fig. 2.

En Wn Wn,r

Nai n− 4 + 8
n

{

n
4 + 1

2 for even n
n
4 + 3

4n for odd n
n
4 + r

2

Eag 2 as Nai as Nai

Maj n− 6 + 16
n 1 r

Opt as Nai

{

n
2 − 1

2 + 1
n for even n

n
2 − 1 + 3

2n for odd n
n−1
2 + r

n

Fig. 2. The algorithms’ aggregate frequencies on En, Wn, and Wn,r.

Proof. In En, the frequency of a is 2
n and the frequency of b is n−2

n . Thus,

Nai(En) = 2 2
n+(n−2)n−2

n = n−4+ 8
n . InWn, the frequency of b0 is ⌊n

2 ⌋/n, and the

frequencies of all the other bi, 1 ≤ i ≤ ⌈n
2 ⌉, are 1

n . Thus,Nai(Wn) = ⌈n
2 ⌉ 1

n+⌊n
2 ⌋

⌊n
2
⌋

n .

Considering both even and odd n gives the stated result. In Wn,r, the frequency

of b0 is 1
2 , and the frequencies of all the other bi, 1 ≤ i ≤ N − 1, are r

n . Thus,

Nai(Wn,r) =
n
2
1
2 + n

2
r
n = n

4 + r
2 .

When processing En, Eag keeps a in its buffer. Hence, Eag(En) = n 2
n = 2. Since

Wn and Wn,r have no repeated items, Eag(Wn) = Nai(Wn) and Eag(Wn,r) =

Nai(Wn,r).

For En, Maj will have a in its buffer for the first four time steps, so Maj(En) is

4 2
n + (n − 4)n−2

n = n − 6 + 16
n . For Wn, Maj brings each bi, 1 ≤ i ≤ n, into its

buffer and never brings b0 into its buffer. Thus, Maj(Wn) = n 1
n = 1. For Wn,r,

Maj brings each bi, 1 ≤ i ≤ N−1, into its buffer and never brings b0 into its buffer.

Thus, Maj(Wn,r) = n r
n = r.

For En, Opt is forced to perform the same as Nai. For Wn, Opt must buffer b1
in the first time step, but it buffers b0 for the remainder of the sequence. Thus,

Opt(Wn) = 1
n + (n − 1)

⌊n
2
⌋

n . Considering both even and odd n gives the stated

result. For Wn,r, Opt must buffer b1 in the first time step, but it buffers b0 for the
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remainder of the sequence. Thus,

Opt(Wn,r) =
r

n
+ (n− 1)

r(N − 1)

n
=

n− 1

2
+

r

n
.

Definition 6. For any online algorithm A, we denote the worst aggregate frequency

of A over all the permutations σ of I by AW (I) = minσ A(σ(I)).

It is convenient to be able to consider items in order of their frequencies. Let D(I) =

b′1, b
′
2, . . . , b

′
n be a sorted list of the items in I in nondecreasing order of frequency.

For example, if I = a, b, c, a, b, a, then D(I) = c, b, b, a, a, a. We will use the notation

D(I) throughout the paper.

Lemma 7. For odd n, MajW (I) = 2
∑⌊n

2
⌋

i=1 fI(b
′
i) + fI(b

′
⌈n

2
⌉), and for even n,

MajW (I) = 2
∑

n
2

i=1 fI(b
′
i), where the b′i are the items of D(I).

Proof. The counter in Majority is always nonnegative and always changing, so at

least half the items lead to increases. We order the items, so that exactly the ⌈n
2 ⌉

requests to the least frequent items are buffered, as follows: Assuming n is even,

then the worst permutation is b′1, b
′
n, b

′
2, b

′
n−1, . . . , b

′
n
2

, b′n
2
+1. All (but the last request

when n is odd) of the requests which lead to an item entering the buffer contribute

twice, since they are also in the buffer for the next step.

The following observation, which we use repeatedly, is easy to verify and it also

follows from the Cauchy-Schwarz inequality.

Proposition 8. Let k non-negative numbers x1, x2, . . . , xk be such that

x1 + x2 + . . .+ xk = n.

Then the sum of the squares of all xi, 1 ≤ i ≤ k, has a lower bound of n2

k and it

achieves this bound when all xi are equal to n
k .

3. Competitive Analysis

A streaming problem was first studied from an online algorithms perspective using

competitive analysis by Becchetti and Koutsoupias [2]. Competitive analysis [13, 12]

evaluates an online algorithm in comparison with an optimal offline algorithm. For

maximization problems, an algorithm A is c-competitive for some constant c if there

is a constant α such that for all finite input sequences I,

Opt(I) ≤ c · A(I) + α.

The infimum over the set of all values of c such that A is c-competitive is called

the competitive ratio of A. If there is no such constant c such that this inequality
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holds for all I, then A is referred to as not being competitive. In particular, A is

not competitive when c must be a function of the length of I.

For the FIU problem, it turns out that the relative performance of algorithms will

depend on the length of I. This is different from the usual situation in competitive

analysis, where we most often have results stating that an algorithm is c-competitive

for some constant c. When using a function instead, we would prefer not to loose any

further precision in our statements, so instead of talking about an algorithm being

O(C(n))-competitive, we would like to be able to talk about the constant in front

of the fastest growing term. To be precise in our statements, we define a modified

and more general version of competitive analysis using ratios which are functions.

Our definition can be adapted easily to minimization problems in the same way

that such adaptations are handled for standard competitive analysis. In all these

definitions, when n is not otherwise defined, we use it to denote |I|, the length of

the sequence I. As usual, when using asymptotic notation in inequalities, notation

such as f(n) ≤ g(n) + o(g(n)) means that there exists a function h(n) ∈ o(g(n))

such that f(n) ≤ g(n)+h(n). Thus, we focus on the high order term of the ratio of

the online algorithm to the optimal algorithm, including the multiplicative constant

in front of it.

The following definition is for maximization problems.

Definition 9. An algorithm A is f(n)-competitive if

∀I : Opt(I) ≤ (f(n) + o(f(n))) · A(I).

A has competitive function f(n) if A is f(n)-competitive and for any g(n) such

that A is g(n)-competitive, limn→∞
f(n)
g(n) ≤ 1.

If algorithm A has competitive function fA(n) and algorithm B has competi-

tive function fB(n), then A is better than B according to competitive analysis if

limn→∞
fA(n)
fB(n) < 1.

Thus, the concept of a competitive function is an exact characterization up to

the level of detail we focus on. It can be viewed as an equivalence relation, and

if limn→∞
f(n)
g(n) = 1 for two functions f(n) and g(n), then they belong to (and

are representatives of) the same equivalence class. For example,
√
n
2 and

√
n

2− 1√
n

are

considered equivalent, whereas
√
n
2 and

√
n
4 are not.

For the FIF problem, we follow the original definition of competitive analysis. For

the FIU problem, none of the three algorithms discussed here is competitive accord-

ing to the original definition. However, information regarding the relative quality of

these algorithms can be obtained from their respective competitive functions.

Giannakopoulos and Koutsoupias proved that no randomized algorithm for the FIU

problem, where the buffer has room for one item, can have a competitive function
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better than 1
3

√
n [11]. Using their technique, the result can be strengthened for the

deterministic case.

Theorem 10. No deterministic algorithm for the FIU problem can have a compet-

itive function better than
√
n
2 .

Proof. Consider any deterministic algorithm A, and input of the form

In = b1, b2, . . . bn−√
n, x, x, . . . , x

where the first n−√
n items are distinct and the last

√
n items are identical. Since

A is deterministic, an adversary will know whether b1 or b2 is in the buffer upon

completion of time step 2. The value of x is based on this. If it is b2, then the

adversary sets x = b1, and if it is b1, then it sets x = b2. As x does not occur among

the next n−√
n − 2 items, A has no chance of bringing x into its buffer until the

last
√
n items arrive, so it stores x in its buffer at most

√
n+ 1 times. Opt stores

x at least n− 1 times. That gives the ratio of

Opt(In)

A(In)
≥

1
n + (n− 1)

√
n+1
n

(n−√
n− 1) 1n + (

√
n+ 1)

√
n+1
n

=
1 + (n− 1)(

√
n+ 1)

n−√
n− 1 + (

√
n+ 1)2

=
n+

√
n− 1

2
√
n+ 1

≥
√
n

2
, for n ≥ 4

A similar technique gives a lower bound on the competitive ratio for the FIF problem

as a function of the size of the universe.

Theorem 11. No deterministic algorithm for the FIF problem can have a compet-

itive ratio better than
√
N+1
2 .

Proof. For large enough n, let q be the smallest non-negative number (not neces-

sarily an integer) such that N−1 divides n−( n√
N
+q). Then r(N−1) = n−( n√

N
+q)

for some positive integer r. Let s = n√
N
+ q. Note that q < N −1, s > q, and both r

and s are linear functions of n. Consider any deterministic algorithm, A, and input

of the form

In = b1, b2, y
r−1, br3, b

r
4, . . . , b

r
N , x

( n√
N

+q−1)

where the bi are N distinct items and x and y are determined based on the behavior

of A in the first two time steps. Since A is deterministic, an adversary will know

whether b1 or b2 is in the buffer upon completion of time step 2. If it is b2, then the

adversary sets x = b1 and y = b2, and if it is b1, then it sets x = b2 and y = b1.

Hence x is the most frequent item in In with frequency s
n and all the other items

have frequency r
n . As x does not occur among the next n − s − 1 items, A has no
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chance of bringing x into its buffer until the last s− 1 items arrive, so it stores x in

its buffer at most s times. Opt stores x at least n− 1 times. That gives the ratio of

Opt(In)

A(In)
≥

r
n + (n− 1) s

n

(n− s) rn + s2

n

=
ns− (s− r)

(n− s)r + s2

=
(N − 1)ns−Ns+ n

Ns2 − 2ns+ n2
, since r = n−s

N−1

=

(

N − 1− N
n

)

(

1√
N

+ q
n

)

+ 1
n

N
(

1√
N

+ q
n

)2

− 2
(

1√
N

+ q
n

)

+ 1
, since s = n√

N
+ q

→
(N − 1) 1√

N

2− 2√
N

for n → ∞

=

√
N + 1

2
.

In [11], Giannakopoulos and Koutsoupias proved that for all sequences I of length

n, Opt(I) ≤ √
n ·Nai(I) for the FIU problem. Here we give tighter results for both

the FIF and FIU problems.

Theorem 12. For the FIF problem, the competitive ratio of Nai is
√
N+1
2 . It is an

optimal deterministic online algorithm for the FIF problem.

Proof. Let f be the frequency of the most frequent item in the input sequence I,

so there are nf occurrences of the most frequent item. Let the other N − 1 items

be b1, b2, . . . , bN−1. Then,
∑N−1

i=1 nI(bi) = n − nf . The total contribution of these

N − 1 items to Nai’s result is
∑N−1

i=1 nI(bi)
nI(bi)

n . By Proposition 8, the aggregate

frequency of all these N − 1 distinct items has a lower bound of (n−nf)2

n(N−1) . Thus,

Nai(I) ≥ nf2 +
(n− nf)2

n(N − 1)
and Opt(I) ≤ nf.

So,

Opt(I)

Nai(I)
≤ nf

nf2 + (n−nf)2

n(N−1)

=
(N − 1)f

Nf2 − 2f + 1
. (1)

The right hand side of Ineq. 1 reaches its maximum when f = 1√
N
. Substituting

this value into Ineq. 1, we get

Opt(I)

Nai(I)
≤

√
N + 1

2
.

Hence by Theorem 11, the competitive ratio of Nai is
√
N+1
2 , and it is an optimal

deterministic online algorithm for the FIF problem.
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Corollary 13. For the FIU problem, Nai has competitive function
√
n
2 . It is an

optimal deterministic online algorithm for the FIU problem.

Proof. Assume N ≤ n. By Theorem 12, Opt(I)
Nai(I) ≤

√
n+1
2 . Since there are only n

items in the sequence, increasing N cannot make the ratio worse. Therefore, for

any value of N , Opt(I)
Nai(I) ≤

√
n+1
2 . Thus, by the lower bound from Theorem 10, the

competitive function of Nai is
√
n
2 and it is optimal.

For Maj, Giannakopoulos and Koutsoupias [11] proved a competitive ratio of Θ(n)

for the FIU problem. We give asymptotically tight bounds for both the FIF and

FIU problems..

Theorem 14. For the FIF problem, the competitive ratio of Maj is N − 1 for

N ≥ 4 and 4
√
2+5
7 and 1 + 2√

3
for the cases of N = 2 and N = 3, respectively.

Proof. Let f be the largest frequency of any item in some input sequence I of

length n. Opt cannot have an aggregate frequency larger than nf .

Maj buffers the first ⌈n
2 ⌉ items of D(I) while processing its worst permutation of

I. Maj buffers all those items twice, except the ⌈n
2 ⌉th item in case of odd n, which

is buffered only once. If f ≤ 1
2 , then the set of the first ⌈n

2 ⌉ items of D(I) does

not contain the most frequent item. Maj’s aggregate frequency is smallest when

the first ⌈n
2 ⌉ places of D(I) are equally distributed over all the available N − 1

remaining items. Therefore Maj(I) ≥ n
2(N−1) is a lower bound (which cannot be

tight when n
2(N−1) is not integer). This gives

Opt(I)

Maj(I)
≤ nf

n
2(N−1)

≤ N − 1.

It remains to consider the range 1
2 < f ≤ 1. Let b0 denote the most frequent item

in I. Note that b0 must be in the buffer at some point since f > 1
2 . Since there

are n − fn items different from b0, the total length of all subsequences where b0
is not in the buffer is at most 2(n − fn). This means that b0 is in the buffer at

least n − 2(n − fn) = 2fn − n times, obtaining an aggregate frequency of at least

(2fn − n)f = 2nf2 − nf . By Proposition 8, the remaining items obtain at least

2(n− fn) n−fn
n(N−1) . Therefore,

Maj(I) ≥ 2nf2 − nf +
2n(1− f)2

N − 1
(2)

and

Opt(I)

Maj(I)
≤ nf

2nf2 − nf + 2n(1−f)2

N−1

=
f

2f2 − f + 2(1−f)2

N−1

. (3)
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The ratio in Ineq. 3 is maximized when f = 1√
N
. However, if N > 4, then with

f = 1√
N
, the least number of times b0 can be in the buffer, (2fn − n), becomes

negative, which is impossible. For N = 2 and N = 3, Ineq. 3 gives the upper bounds
4
√
2+5
7 and 1+ 2√

3
, respectively, on the ratios. Both of these two bounds are greater

than the corresponding values of N − 1.

Now we consider the case when N ≥ 4 and 1
2 < f ≤ 1. If we can prove that the

right hand side of Ineq. 2 is at least nf
N−1 , then

Opt(I)
Maj(I) ≤

nf
nf/(N−1) = N − 1, and we

will be done. The right hand side of Ineq. 2 is at least nf
N−1 if and only if

2Nf2 − (N + 4)f + 2 ≥ 0. (4)

Taking the derivative of the left side of Ineq. 4 shows that it is an increasing function

of f for N ≥ 4 and f > 1
2 . The left side of Ineq. 4 is greater than zero for N = 4 and

f > 1
2 , so the condition of Ineq. 4 is true. Thus, Opt(I) ≤ (N − 1)Maj(I) holds

for all f and N ≥ 4. So, Maj is (N − 1)-competitive for N ≥ 4, 4
√
2+5
7 -competitive

for N = 2, and 1 + 2√
3
-competitive for N = 3.

For a lower bound in the cases N = 2 and N = 3, we construct a sequence I ′ with
n√
N

+ q occurrences of the most frequent item where q is the smallest non-negative

number such that N − 1 divides n − ( n√
N

+ q). We argue that we can find such

a q: If N − 1 should divide n − ( n√
N

+ q), we must find an integer z such that

n − ( n√
N

+ q) = z(N − 1), implying that q = z(N − 1) − n + n√
N
. For z = −1,

the right-hand side is negative. It is also clear that we can keep increasing z until

the right-hand side is positive. Thus, we can find a smallest integer z making the

right-hand side positive, and thereby defining a q with the desired property. With

this, f = 1√
N

+ q
n . Letting r(N − 1) = n − ( n√

N
+ q), we decide on r occurrences

of each of the other N − 1 items, and place all those r(N − 1) items in the first

r(N − 1) odd places of I ′. Then,

Opt(I ′) = (n− 1)f +
r

n

and

Maj(I ′) = 2nf2 − nf +
2n(1− f)2

N − 1
.

For large values of n, Opt(I′)
Maj(I′) becomes very close to the rightmost expression of

Ineq. 3 and f becomes very close to 1√
N
, which gives the expression for the upper

bound. Hence, the competitive ratio of Maj is 4
√
2+5
7 and 1 + 2√

3
for the cases

of N = 2 and N = 3 respectively. Note that these values are greater than the

corresponding competitive ratios of Nai. Therefore Nai is better than Maj for

N = 2 and N = 3.
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For a lower bound for N ≥ 4, consider the family of sequences Wn,r from Defini-

tion 4, where r = n
2(N−1) . By Proposition 5,

Opt(Wn,r)

Maj(Wn,r)
=

n− 1

2r
+

1

n
= (N − 1)− N

n
+

2

n
.

Thus, the competitive ratio of Maj is N − 1 for N ≥ 4.

Theorem 15. For the FIU problem, Maj has competitive function n
2 .

Proof. For the lower bound, consider the family of sequences Wn from Definition 4.

By Proposition 5, Maj(Wn) = 1, and

Opt(Wn) =

{

n
2 − 1

2 + 1
n for even n

n
2 − 1 + 3

2n for odd n

Consequently, Opt(Wn) ≥ n
2Maj(Wn)− 1. Thus, the competitive function cannot

be better than n
2 .

For the upper bound, let f be the largest frequency of any item in some input

sequence I of length n. Opt cannot have an aggregate frequency larger than nf . If

f ≤ 1
2 , then, since no algorithm can have an aggregate frequency less than one in

total, Opt(I)
Maj(I) ≤ nf ≤ n

2 . It remains to consider the range 1
2 < f ≤ 1. Since f > 1

2 ,

the number of distinct items in the input sequence is at most n
2 , so N ≤ n

2 . By

Theorem 14, Opt(I)
Maj(I) ≤ N − 1 < n

2 . This implies that Maj is n
2 -competitive and, in

total, that the competitive function of Maj is n
2 .

Thus, according to competitive analysis, Nai is better than Maj for both the FIU

and FIF problems.

Theorem 16. For the FIU problem, the competitive function of Eag is n
2 .

Proof. For the lower bound, consider the family of sequences En from Definition 4.

By Proposition 5, Eag(En) = 2, and Opt(En) = n − 4 + 8
n . Thus, Opt(En) =

n
2Eag(En)− 4 + 8

n , and Eag’s competitive function cannot be better than n
2 .

If there are no repeated items in I, then Eag behaves like Nai and that will give

Opt(I) ≤ (
√
n
2 +o(

√
n))Eag(I) by Corollary 13. It is evident from the lower bound

result that the competitive function for Eag is worse than
√
n
2 , so we assume that

there is at least one repeated item in I. Let time steps p+ 1 and p+ 2 be the first

occurrence of a repeated item in I. Let b be the most frequent item in I. Note that

b is not necessarily the item which arrived at time steps p + 1 and p + 2. After p,

all the items could conceivably be b, but among the first p items, at most p
2 items

can be b, because p + 1 and p + 2 are the indices of the first repeated item. So,
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an upper bound on the maximum frequency fI(b) is
n−p+ p

2

n =
n− p

2

n . This gives an

upper bound of Opt(I) ≤ n
n− p

2

n = n− p
2 .

Now we consider a lower bound on Eag(I). In the worst case for Eag, all the items

before p+1 are distinct, so their contribution to Eag(I) is at least p
n . In the worst

case for Eag, the item that occurs at time steps p+ 1 and p+ 2 has frequency 2
n ,

so the contribution to Eag(I) from the items after p is at least (n − p) 2n . Thus,

Eag(I) ≥ p
n + (n− p) 2n = 2− p

n , and

Opt(I)

Eag(I)
≤ n− p

2

2− p
n

=
n

2
.

Hence, Eag has competitive function n
2 .

Corollary 17. For the FIF problem, Eag is not competitive.

Proof. From the lower bound proof of Theorem 16, we can see that irrespective

of the value of N ≥ 2, Eag has competitive function n
2 , i.e., it is a function of n.

Thus, Eag is not competitive according to the original definition of the competitive

ratio.

Although Eag has the same competitive ratio as Maj for the FIU problem, accord-

ing to competitive analysis, Maj is better than Eag for the FIF problem. Clearly,

competitive analysis indicates that Nai is better than Eag for both problems.

4. Relative Interval Analysis

Dorrigiv et al. [10] proposed another analysis method, relative interval analysis, in

the context of paging. Relative interval analysis compares two online algorithms

directly, i.e., it does not use the optimal offline algorithm as the baseline of the

comparison. This direct comparison, which is also a property of the measure in the

next section on relative worst order analysis, gives an advantage over competitive

analysis in being able to differentiate between pairs of algorithms, where one does at

least as well as the other on every sequence. For example, for the paging problem,

both relative interval analysis [10] and relative worst order analysis [5] indicate

that Least-Recently-Used (LRU) is better than Flush-When-Full (FWF), whereas

these two very different algorithms have the same competitive ratio. In general, it

compares two algorithms on the basis of their minimal and maximal differences in

profit relative to the length of the input sequence, where the profit in our context is

the aggregate frequency. In this way, both best and worst case performances matter.

Furthermore, results are made comparable by dividing by the input length. This

seems reasonable if one assumes that the maximal profit possible depends linearly
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on the input length. Here we define this analysis for maximization problems for two

algorithms A and B, following [10].

Definition 18. Define

MinA,B(n) = min
|I|=n

{A(I)− B(I)} and MaxA,B(n) = max
|I|=n

{A(I)− B(I)} ,

and

Min(A,B) = lim inf
n→∞

MinA,B(n)

n
and Max(A,B) = lim sup

n→∞

MaxA,B(n)

n
.

The relative interval of A and B is defined as

l(A,B) = [Min(A,B),Max(A,B)] .
If Max(A,B) > |Min(A,B)|, then A is said to have better performance than B in

this model.

Note that Min(A,B) = −Max(B,A) and Max(A,B) = −Min(B,A).

For any pair of algorithms, A and B, for the frequent items problem, there is a

trivial upper bound on Max(A,B) and lower bound on Min(A,B).

Proposition 19. For any pair of algorithms A and B, Max(A,B) ≤ 1 and

Min(A,B) ≥ −1.

Proof. The maximum aggregate frequency any algorithm could have is for a se-

quence where all items are identical, giving the value n. The minimum is for a

sequence where all items are different, giving the value 1. The stated bounds follow

since lim supn→∞
n−1
n = 1.

4.1. Naive vs. Eager

According to relative interval analysis, Nai has better performance than Eag.

Theorem 20. For the FIF problem, according to relative interval analysis,

l(Nai,Eag) = [− 1
4 + 1

4N , 1].

Proof. By Proposition 19, Max(Nai,Eag) ≤ 1.

We now consider a lower bound on Max(Nai,Eag). By Proposition 5, Nai(En)−
Eag(En) = (n− 4 + 8

n )− 2, so

lim sup
n→∞

Nai(En)− Eag(En)

n
= lim sup

n→∞

n− 6 + 8
n

n
= 1.

Thus, Max(Nai,Eag) = 1.
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We now consider Min(Nai,Eag). For a lower bound on Min(Nai,Eag), assume that

among the sequences of length n, I gives the smallest possible value of Nai(I) −
Eag(I). From the definitions of Nai and Eag, it is evident that there must be at

least one repeated item if Nai(I)−Eag(I) < 0. Suppose that the first repeated item

is a, which is repeated at time steps t and t+1. The item amust be the most frequent

item in I; otherwise two occurrences of the most frequent item can be swapped with

the item at t and t+1 to get a smaller value of Nai(I)−Eag(I). Since at and after

time step t, Eag buffers only the most frequent item, Nai(I)−Eag(I) is minimized

when t = 1, i.e., a must occur at the first two time steps of I. That gives

Nai(I) ≥ nI(a)
2

n
+ (n− nI(a))

n− nI(a)

n(N − 1)
and Eag(I) = n

nI(a)

n
so,

Nai(I)− Eag(I) ≥ (n− nI(a))
2

n(N − 1)
− nI(a)(n− nI(a))

n

=

(

1− nI(a)

n

)

n−NnI(a)

N − 1
(5)

The right hand side of Ineq. 5 is minimized when nI(a) =
n(N+1)

2N . Substituting this

value of nI(a) into Ineq. 5, we get

Nai(I)− Eag(I) ≥
(

1− N + 1

2N

)

n− n(N+1)
2

N − 1
= −n(N − 1)

4N

So,

Min(Nai,Eag) = lim inf
n→∞

MinNai,Eag(n)

n
≥ −1

4
+

1

4N
. (6)

For an upper bound on Min(Nai,Eag), we construct an input sequence I ′ with
n = 2Nr for any positive integer r. Suppose that the most frequent item in I ′ is
a, nI′(a) = r(N + 1), and the other N − 1 items have r occurrences each. Let the

first two items of I ′ be a. The input sequence I ′ is identical to the lower bound

sequence I, so Nai(I ′) − Eag(I ′) = −n(N−1)
4N and Min(Nai,Eag) ≤ − 1

4 + 1
4N .

Thus, l(Nai,Eag) = [− 1
4 + 1

4N , 1].

Corollary 21. For the FIU problem, according to relative interval analysis,

l(Nai,Eag) = [− 1
4 , 1].

Proof. The proof of Theorem 20 holds here also and gives this result asymptotically

when the size of the universe is unbounded. Note that in the upper bound for

− 1
4 + 1

4N , one can let r = 1 and N = n/2 to give this asymptotic result.
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4.2. Naive vs. Majority

Nai and Maj are equally good according to relative interval analysis.

Theorem 22. For the FIF problem, according to relative interval analysis,

l(Nai,Maj) = [− 1
4 + 1

4N , 1
4 − 1

4N ].

Proof. For the maximum value of Nai(I)−Maj(I), it is sufficient to consider the

worst permutation of I for Maj since Nai has the same output for all permutations

of I. For the worst permutation, MajW (I) will buffer only the first ⌈n
2 ⌉ items of the

distribution D(I). The first ⌊n
2 ⌋ items will be buffered twice and in case of odd n,

the ⌈n
2 ⌉th item will be stored once at the last time step. LetD(I) = b′1, b

′
2, b

′
3, . . . , b

′
n.

Nai(I)−MajW (I) =
n
∑

i=1

fI(a
′
i)− 2

⌊n
2
⌋

∑

i=1

fI(a
′
i)−

(⌈n

2

⌉

−
⌊n

2

⌋)

fI(a
′
⌈n

2
⌉)

=

n
∑

i=⌈n+2

2
⌉

fI(a
′
i)−

⌊n
2
⌋

∑

i=1

fI(a
′
i). (7)

The right hand side of Eq. 7 is the difference between the aggregate frequencies

of the last ⌊n
2 ⌋ items and the first ⌊n

2 ⌋ items of D(I). Denote these two values of

aggregate frequencies by Bl and Bf , respectively. Let p be the number of occurrences

of the most frequent item a in I. An upper bound on Bl is ⌊n
2 ⌋

p
n . For a lower bound

on Bf , the aggregate frequency of n − p items other than a must be minimum. If

p ≥ ⌈n
2 ⌉, then a contributes (p− ⌈n

2 ⌉)
p
n to Bf , so by Proposition 8, a lower bound

on Bf is (p− ⌈n
2 ⌉)

p
n + (n−p)2

n(N−1) . Therefore, if p ≥ ⌈n
2 ⌉, then

Nai(I)−Maj(I) ≤
⌊n

2

⌋ p

n
− (p−

⌈n

2

⌉

)
p

n
− (n− p)2

n(N − 1)

= p− p2

n
− (n− p)2

n(N − 1)
. (8)

From Ineq. 8, the upper bound on the difference is maximized when p = n(N+1)
2N .

This gives an upper bound on Nai(I)−Maj(I) of n
4 − n

4N .

If p < ⌈n
2 ⌉, then an upper bound on Bl is

n
2
1
2 = n

4 and by Proposition 8, a lower

bound on Bf is n−1
2

n−1
2(N−1)n . Therefore, if p < ⌈n

2 ⌉, then

Nai(I)−Maj(I) ≤ n

4
− n2 − 2n+ 1

4n(N − 1)
. (9)

Thus, for any value of p, Max(Nai,Maj) ≤ 1
4 − 1

4N .

For a lower bound on the maximum value of Nai(I)−Maj(I), we construct a family

of sequences In,r of length n = 2rN for any positive integer r. In,r is defined as

In,r = (b1, b0)
r, (b2, b0)

r, . . . , (bN−1, b0)
r, (b0)

2r,
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where there are (N − 1)r + 2r = (N + 1)r copies of b0, which is the most frequent

item in In,r. All the other items in In,r have r = n
2N occurrences each. Thus,

Nai(In,r) =
(N + 1)2r2

n
+ (N − 1)

r2

n
and

Maj(In,r) = 2(N − 1)r
r

n
+ 2r

(N + 1)r

n
.

Therefore, by substituting the value of r,

Nai(In,r)−Maj(In,r) =
n

4
− n

4N
.

Thus, Max(Nai,Maj) ≥ lim supn→∞
Nai(In,r)−Maj(In,r)

n = 1
4 − 1

4N , matching the

upper bound.

To derive the minimum value of Nai(I)−Maj(I), we calculate the maximum value

of Maj(I)−Nai(I). For an upper bound, we consider the best permutation IB for

Maj of an arbitrary sequence I. For IB , Maj buffers the half of the requests in the

sequence with the highest frequencies. The difference, Maj(IB)−Nai(IB), is

2
n
∑

i=⌈n+2

2
⌉

fI(a
′
i) +

(⌈n

2

⌉

−
⌊n

2

⌋)

fI(a
′
⌈n

2
⌉)−

n
∑

i=1

fI(a
′
i)

=
n
∑

i=⌈n+2

2
⌉

fI(a
′
i)−

⌊n
2
⌋

∑

i=1

fI(a
′
i). (10)

This expression is exactly the same as the expression for Nai(I) − MajW (I)

from Eq. 7, so we get the same upper bound, n
4 − n

4N . For a lower bound on

Max(Maj,Nai), we use a specific permutation I ′n,r of In,r.

I ′n,r = (b0)
r(N+1), (b1)

r, (b2)
r, . . . , (bN−1)

r.

Consequently,

Nai(I ′n,r) = Nai(In,r) =
(N + 1)2r2

n
+ (N − 1)

r2

n
and

Maj(I ′n,r) = n
(N + 1)r

n
= (N + 1)r.

Therefore, by substituting the value of r,

Maj(I ′n,r)−Nai(I ′n,r) =
n

4
− n

4N
.

Thus, Max(Maj,Nai) ≥ lim supn→∞
Maj(I′

n,r)−Nai(I′
n,r)

n = 1
4 − 1

4N , matching the

upper bound. Hence, Min(Nai,Maj) = −Max(Maj,Nai) = − 1
4 + 1

4N , and

l(Nai,Maj) = [− 1
4 + 1

4N , 1
4 − 1

4N ].

Corollary 23. For the FIU problem, according to relative interval analysis,

l(Nai,Maj) = [− 1
4 ,

1
4 ].
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Proof. Substituting the values r = 1 and N = n/2 into the proof of Theorem 22

gives these asymptotic results.

4.3. Majority vs. Eager

According to relative interval analysis, Maj has better performance than Eag.

Theorem 24. For the FIF problem, according to relative interval analysis,

l(Maj,Eag) = [− 1
2 + 1

2N , 1].

Proof. By Proposition 19, Max(Maj,Eag) ≤ 1. For a lower bound on

Max(Maj,Eag), we consider the family of sequences En from Definition 4. By

Proposition 5, Maj(En) − Eag(En) = (n − 6 + 16
n ) − 2 = n − 8 + 16

n , and

Max(Maj,Eag) ≥ lim supn→∞
n−8+ 16

n

n = 1. Thus, Max(Maj,Eag) = 1.

For Min(Maj,Eag), we consider Max(Eag,Maj). First we calculate an upper

bound on Eag(I) −Maj(I). Suppose that the input sequence I of length n gives

the maximum value of Eag(I)−Maj(I) over all sequences of length n. Suppose I

has k distinct items b1, b2, b3, . . . , bk, and let fi = fI(bi) and ni = nI(bi) for all i.

Assume that f1 ≤ f2 ≤ f3 ≤ . . . ≤ fk, so bk is the most frequent item.

First, assume nk ≤ n
2 (for odd n, nk ≤ n−1

2 ). Maj buffers the first n
2 items of D(I)

if n is even and it buffers the first n+1
2 items of D(I) if n is odd. We get a lower

bound on Maj(I) by distributing the remaining N − 1 distinct items over these n
2

(for odd n, n+1
2 ) places. So, Maj(I) ≥ n n

2n(N−1) =
n

2(N−1) , and

Eag(I)−Maj(I) ≤ nfk − n

2(N − 1)
≤ n

n
2

n
− n

2(N − 1)
=

n

2

(

1− 1

N − 1

)

.(11)

It remains to consider the range n
2 < nk ≤ n. Assume that for some positive integer

q′, such that q = q′− ⌈n
2
⌉−⌊n

2
⌋

2 , we have nk = n
2+q. From Proposition 7, we know that

Maj’s result has the lower bound MajW (I) ≥ 2(
∑k−1

i=1 nifi+ qfk). The summation

is minimized when the k − 1 least frequent items have the same frequencies. Since

those k − 1 distinct items are distributed over the remaining n
2 − q places, in this

case, Maj(I) ≥ 2
(

(n2 − q)
n
2
−q

n(N−1) + q
n
2
+q

n

)

. Hence,

Eag(I)−Maj(I) ≤ n

2
+ q − 2

(

(n

2
− q

) n
2 − q

n(N − 1)
+ q

n
2 + q

n

)

=
n

2

(

1− 1

N − 1

)

− 2q

(

qN − n

n(N − 1)

)

(12)

The right hand side of Ineq. 12 is maximized when q = n
2N . That gives

Eag(I)−Maj(I) ≤ n

2

(

1− 1

N

)

. (13)
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For a lower bound on the maximum value of Eag(I) − Maj(I), we construct a

family of sequences In,r of length n = 2rN for any integer r ≥ 2. In,r is defined as

In,r = b0, b0, b1, b1, (b1, b0)
r−2, (b2, b0)

r, . . . , (bN−1, b0)
r, (b0)

2r

where there are (N − 1)r + 2r = (N + 1)r occurrences of b0, which is the most

frequent item in In,r. All the other items in In,r have r = n
2N occurrences each.

Eag(In,r) = n
(N + 1)r

n
and

Maj(In,r) = 4
(N + 1)r

n
+ 2((N − 1)r − 2)

r

n
+ 2r

(N + 1)r

n
.

Therefore, by substituting the value of r,

Eag(In,r)−Maj(In,r) =
n

2
(1− 1

N
)− 2.

From this lower bound and the upper bound from Eq. 13, we have

Min(Maj,Eag) = −Max(Eag,Maj) = − lim sup
n→∞

Eag(I)−Maj(I)

n
= −1

2
+

1

2N
.

Therefore l(Maj,Eag) = [− 1
2 + 1

2N , 1].

Corollary 25. For the FIU problem, according to relative interval analysis,

l(Maj,Eag) = [− 1
2 , 1].

Proof. Substituting the values k = N = n − nk + 1 in the proof of Theorem 24

gives these asymptotic results.

5. Relative Worst Order Analysis

Relative worst order analysis [4] compares two online algorithms directly. It com-

pares two algorithms on their worst orderings of sequences which have the same

content, but possibly different order. Thus, rather than comparing algorithms di-

rectly to each other on the same sequences, it compares algorithms on the set of

sequences having the same content, but in a different order. The result is that,

compared with relative worst order analysis, fewer pairs of algorithms are simply

incomparable. For example, under relative worst order analysis, conservative algo-

rithms for paging can be proven to be equivalent, whereas this cannot be established

for relative interval analysis due to incomparability issues [10, 5]. The definition of

this measure is somewhat more involved; see [5] for more intuition on the various

elements.

Definition 26. Using the definition of worst aggregate frequency over permutations

of sequences from Definition 6, for any pair of algorithms A and B, we define

cl(A,B) = sup {c | ∀I : AW (I) ≥ cBW (I)− b} and

cu(A,B) = inf {c | ∀I : AW (I) ≤ cBW (I) + b} .
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If cl(A,B) ≥ 1 or cu(A,B) ≤ 1, the algorithms are said to be comparable and

the relative worst order ratio WRA,B of algorithm A to algorithm B is defined.

Otherwise, WRA,B is undefined.

If cl(A,B) ≥ 1 then WRA,B = cu(A,B), and

if cu(A,B) ≤ 1 then WRA,B = cl(A,B).

If WRA,B > 1, the algorithms A and B are said to be comparable in A’s favor.

Similarly, if WRA,B < 1, algorithms are said to be comparable in B’s favor.

For the FIF problem, we use the above definition of relative worst order analysis.

However, for the FIU problem, as in the case of competitive analysis, the relative

performance of the algorithms depends on the length of the input sequence I. As

in Section 3, we define a generalized version of relative worst order analysis for use

with the FIU problem. The definition is given for a maximization problem, but is

trivially adaptable to be used for minimization problems as well; only the decision

as to when which algorithm is better would change.

The following definition is parameterized by a total ordering, ⊑, since we will later

use it for both ≤ and ≥.

Definition 27. f is a (A,B,⊑)-function if

∀I : AW (I) ⊑ (f(n) + o(f(n))) · BW (I),

where A and B are algorithms and ⊑ is a total ordering. Recall from Definition 6

that the notation AlgW (I), where Alg is some algorithm, denotes the result of

Alg on its worst permutation of I.

f is a bounding function with respect to (A,B,⊑) if f is a (A,B,⊑)-function and

for any (A,B,⊑)-function g, limn→∞
f(n)
g(n) ⊑ 1.

If f is a bounding function with respect to (A,B,≤) and g is a bounding function

with respect to (A,B,≥), then A and B are said to be comparable if limn→∞ f(n) ≤
1 or limn→∞ g(n) ≥ 1.

If limn→∞ f(n) ≤ 1, then B is better than A and g(n) is a relative worst order

function of A and B, and if limn→∞ g(n) ≥ 1, then A is better than B and f(n) is

a relative worst order function of A and B.

We use WRA,B = f(n) to indicate that f(n) belongs to the equivalence class of

relative worst order functions of A and B.

The competitive function, as given in Definition 9, could also have been defined

using this framework, but was defined separately as a gentle introduction to the

idea.
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5.1. Naive vs. Optimal

Relative worst order analysis can show the strength of the simple, but adaptive,

Nai algorithm by comparing it with the powerful Opt. Nai is an optimal algorithm

according to relative worst order analysis, in the sense that it is equivalent to Opt.

We first prove that Nai and Opt are equivalent.

Theorem 28. For both the FIU and FIF problems, according to relative worst order

analysis, WROpt,Nai = 1.

Proof. In the aggregate frequency problem, even though Opt knows the entire

sequence in advance, it cannot store an item before it first appears in the sequence.

Thus, for any input sequence I, the worst permutation for Opt is the sorting of I

according to the increasing order of the frequencies of the items, as expressed by

D(I). On this ordering,Opt is forced to behave likeNai. Therefore, cu(Nai,Opt) =

cl(Nai,Opt) = 1, proving the theorem.

5.2. Naive vs. Eager

From Theorem 28, Nai must be at least as good as Eag according to relative worst

order analysis. The following result shows that it is strictly better.

Theorem 29. For the FIU problem, according to relative worst order analysis,

WRNai,Eag = n
2 .

Proof. From Theorem 28, we know that for Opt’s worst permutation IW of any

sequence I, Opt(IW ) = Nai(IW ). Any arbitrary online algorithm A cannot be

better than Opt on any sequence. Therefore cl(Nai,Eag) ≥ 1, so Nai and Eag

are comparable.

For any arbitrary online algorithm A and a worst order IW for A of any sequence I,
Nai(IW )
A(IW ) = Opt(IW )

A(IW ) , so a competitive function of A is an upper bound on cu(Nai,A).

By Theorem 16, a competitive function of Eag is n
2 , for any value of N ≥ 2. Thus,

cu(Nai,Eag) ≤ n
2 .

For a lower bound, consider the family of sequences En from Definition 4. These

sequences are in the worst ordering for both Eag and Opt. By Proposition 5,

Nai(En) = n− 4 + 8
n and Eag(En) = 2. Thus,

NaiW (En) =
n

2
EagW (En)− 4 +

8

n

and WRNai,Eag = n
2 .
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Since we use the original definition of relative worst order for the FIF problem rather

than relative worst order functions, according to this definition, Nai is unboundedly

better than Eag.

Corollary 30. For the FIF problem, according to relative worst order analysis,

WRNai,Eag = ∞.

Proof. Since the lower bound in the proof of Theorem 29 uses the sequence En,

where N = 2, the proof also holds for the problem where the size of the universe

is bounded. The relative worst order function from Theorem 29 is unbounded, so

using the original definitions, WRNai,Eag = ∞.

5.3. Naive vs. Majority

According to relative worst order analysis, Nai is better than Maj, though not

quite as much better as compared to Eag.

Theorem 31. For the FIF problem, according to relative worst order analysis,

WRNai,Maj =
N
2 for N ≥ 4.

Proof. Since Nai and Opt perform the same on their worst orderings of any se-

quence, Nai and Maj are comparable and cl(Nai,Maj) ≥ 1.

Next we derive the value of cu(Nai,Maj). Since Nai’s aggregate frequency is the

same on any ordering of that sequence, we can compare Nai and Maj on the same

sequence, namely Maj’s worst ordering of it; that is also a worst ordering for Nai.

Suppose the input sequence I gives the largest ratio of NaiW (I)
MajW (I) for sequences of

length n. Suppose I has k distinct items b1, b2, . . . , bk, and let fi = fI(bi) and

ni = nI(bi) for all i. Assume that f1 ≤ f2 ≤ f3 ≤ . . . ≤ fk, so bk is the most

frequent item.

If nk ≤ ⌊n
2 ⌋, then

NaiW (I)

MajW (I)
=

∑k
i=1 nifi

2(
∑j−1

i=1 nifi + pfj) +
(

⌈n
2 ⌉ − ⌊n

2 ⌋
)

fj

=

∑k
i=1 n

2
i

2(
∑j−1

i=1 n2
i + pnj) +

(

⌈n
2 ⌉ − ⌊n

2 ⌋
)

nj

(14)

where j ≤ k is the largest index such that
∑j−1

i=1 ni + p = ⌈n
2 ⌉ for some non-

negative integer p. We create another sequence I ′ from I by replacing all the bi’s

where j < i < k with bk, and by replacing nj − p −
(

⌈n
2 ⌉ − ⌊n

2 ⌋
)

bj ’s with bk. I
′

will have j+1 distinct items and the most frequent item will have ⌊n
2 ⌋ occurrences.

Since all these changes will increase the numerator and not change the denominator
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in Eq. 14, I ′ will give at least as large a ratio as I, so we consider the sequence I ′

instead of I. Suppose the distinct items of I ′, in nondecreasing order of frequency, are

â1, â2, . . . , âj+1 and the corresponding counts are n̂1, n̂2, . . . , n̂j+1 and n̂j+1 = ⌊n
2 ⌋.

Then,

NaiW (I ′)

MajW (I ′)
≤ ⌊n

2 ⌋2 +
∑j

i=1 n̂
2
i

2
∑j

i=1 n̂
2
i −

(

⌈n
2 ⌉ − ⌊n

2 ⌋
)

n̂j

(15)

The above ratio is maximized when the term
∑j

i=1 n̂
2
i obtains its minimum. Since

∑j
i=1 n̂i = ⌈n

2 ⌉, by Proposition 8 this occurs when all n̂i are equal and j = N − 1.

Thus,

NaiW (I ′)

MajW (I ′)
≤

⌊n
2 ⌋2 + (N − 1)

(

⌈n
2 ⌉ 1

N−1

)2

2(N − 1)
(

⌈n
2 ⌉ 1

N−1

)2 ≤ N

2
(16)

is an upper bound (which cannot be tight when n
2(N−1) is not integer).

It remains to consider the range n
2 < nk ≤ n. In this case,

NaiW (I)

MajW (I)
=

∑k
i=1 nifi

2(
∑k−1

i=1 nifi + qfk)
=

n2
k +

∑k−1
i=1 n2

i

2qnk + 2
∑k−1

i=1 n2
i

(17)

where
∑k−1

i=1 ni + q = n
2 for some positive integer q′ such that q = q′ − ⌈n

2
⌉−⌊n

2
⌋

2 .

Note that for odd n, 2q = 2q′ − 1 and Maj buffers bk for 2q time steps. As in the

case of nk ≤ ⌊n
2 ⌋, the ratio is maximized when

∑k−1
i=1 n2

i is minimized. So,

NaiW (I)

MajW (I)
≤

(n2 + q)2 +
(n
2
−q)2

N−1

2q(n2 + q) + 2
(n
2
−q)2

N−1

. (18)

The right hand side of Ineq. 18 is maximized when q is equal to either n√
N

− n
2 or

−( n√
N
+ n

2 ). Since q is positive, the only option is q = n√
N
− n

2 and N = 2 or N = 3.

For all the other values of N , the maximum ratio is given by the case of nk ≤ ⌊n
2 ⌋.

However, substituting the above value of q and N = 2 and N = 3 in Ineq. 18 gives

NaiW (I)

MajW (I)
≤











6+2
√
2

7 < 1.262 for N = 2
3+

√
3

3 < 1.578 for N = 3
N
2 for N ≥ 4

(19)

In the case of N = 2 and N = 3, for a lower bound on the maximum value of the

ratio, we take a sequence with sufficiently large n, such that we can get an almost

integer value of q. A worst permutation for Maj can easily be built by placing all

the items that are not most frequent in consecutive odd places starting from the

first place. This sequence approximately gives the same values as in Ineq. 19. In the

case of N ≥ 4, we use Wn,r, which gives the ratio of n
4r +

1
2 = N

2 , since r = n
2(N−1) .

Hence, the upper bound and the lower bound on cu(Nai,Maj) are identical. Thus,

cu(Nai,Maj) = N
2 , and WRNai,Maj =

N
2 for N ≥ 4.
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Theorem 32. For the FIU problem, according to relative worst order analysis,

WRNai,Maj =
n
4 .

Proof. As in the proof of the previous theorem, since Nai and Opt perform the

same on their worst orderings of any sequence, Nai and Maj are comparable.

Next we derive a bounding function with respect to (Nai,Maj,≤). According to

Definition 27, we must exhibit a function f such that ∀I : NaiW (I) ≤ (f(n) +

o(f(n))) · MajW (I). To do this, we consider worst order sequences for the two

algorithms and work with the ratio NaiW (I)
MajW (I) , from which we will be able to find f .

Since Nai’s aggregate frequency is the same on any ordering of that sequence, we

can compare Nai and Maj on the same sequence, namely Maj’s worst ordering

of it; that is also a worst ordering for Nai. Suppose the input sequence I gives

the largest ratio of NaiW (I)
MajW (I) for sequences of length n. Suppose I has k distinct

items, b1, b2, . . . , bk, and let fi = fI(bi) and ni = nI(bi) for all i. Assume that

f1 ≤ f2 ≤ f3 ≤ . . . ≤ fk, so bk is the most frequent item.

If nk ≤ ⌊n
2 ⌋, then

NaiW (I)

MajW (I)
=

∑k
i=1 nifi

2(
∑j−1

i=1 nifi + pfj) +
(

⌈n
2 ⌉ − ⌊n

2 ⌋
)

fj

=

∑k
i=1 n

2
i

2(
∑j−1

i=1 n2
i + pnj) +

(

⌈n
2 ⌉ − ⌊n

2 ⌋
)

nj

(20)

where j ≤ k is the largest index such that
∑j−1

i=1 ni + p = ⌊n
2 ⌋ for some non-

negative integer p. We create another sequence I ′ from I by replacing all the bi’s

where j < i < k with bk, and by replacing nj − p −
(

⌈n
2 ⌉ − ⌊n

2 ⌋
)

bj ’s with bk. I
′

will have j+1 distinct items and the most frequent item will have ⌊n
2 ⌋ occurrences.

Since all these changes will increase the numerator and not change the denominator

in Eq. 20, I ′ will give at least as large a ratio as I, so we consider the sequence I ′

instead of I. Suppose the distinct items of I ′, in nondecreasing order of frequency, are

â1, â2, . . . , âj+1 and the corresponding counts are n̂1, n̂2, . . . , n̂j+1 and n̂j+1 ≤ ⌊n
2 ⌋.

Then,

NaiW (I ′)

MajW (I ′)
≤ ⌊n

2 ⌋2 +
∑j

i=1 n̂
2
i

2
∑j

i=1 n̂
2
i −

(

⌈n
2 ⌉ − ⌊n

2 ⌋
)

n̂j

(21)

Note that since we are first discussing the ratio in terms of a generic input sequence,

this is the same formula as the corresponding formula (15) in the previous proof.

However, when we now consider concrete instantiations of the sequence with items

from the universe, here, as opposed to the previous proof, we are not constrained

by the finite universe and thereby forced to use the same items repeatedly. We can

choose distinct items when this will help us maximize the ratio. Consider any item

âi where i ≤ j. Suppose its count is n̂i > 1. Replace the n̂i copies of âi by n̂i

distinct items which are different from all the other items in I ′. In most cases, this
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replacement will decrease the numerator in Eq. 21 by n̂2
i − n̂i and will decrease

the denominator by 2(n̂2
i − n̂i). The only exception is when i = j and n is odd,

in which case the denominator will decrease by 2n̂2
i − 3n̂i + 1. However, in either

case, the decrease in the denominator is as large as that in the numerator. Since

the lower bound on the ratio is 1, this replacement will increase the ratio. Hence,

the maximum ratio will be achieved if all the items, except the most frequent item,

have frequency 1
n , so I ′ has the same form as Wn. Using Proposition 5,

NaiW (I ′)

MajW (I ′)
=

{

n
4 + 1

2 for even n
n
4 + 3

4n for odd n
(22)

It remains to consider the range ⌊n
2 ⌋ < nk ≤ n. Since nk > ⌊n

2 ⌋, the number of

distinct items is at most ⌊n
2 ⌋+ 1. By Theorem 31, NaiW (I)

MajW (I) ≤ N
2 ≤ n

4 + 1
2 for any I

and for large enough n. Thus, by Eq. 22, n
4 is a (Nai,Maj,≤)-function.

Since Eq. 22 shows that Wn gives the largest ratio among sequences of length n, we

can use the same sequence for the lower bound, showing that WRNai,Maj =
n
4 .

5.4. Majority vs. Eager

Theorem 33. For the FIU problem, according to relative worst order analysis,

Maj and Eag are incomparable.

Proof. First, we show that Maj can be much better than Eag. Consider the family

of sequences En from Definition 4. These sequences are in their worst orderings for

both Maj and Eag. By Proposition 5, Eag(En) = 2, so

MajW (En) = n− 6 +
16

n
≥

(

n

2
− 3 +

8

n

)

EagW (En).

Now, we show that Eag can be much better than Maj. Consider the family of

sequences Wn from Definition 4. These sequences are in their worst orderings for

Maj, so by Proposition 5, MajW (Wn) = 1. A worst ordering for Eag is

W ′
n = a1, a2, . . . , a⌈n

2
⌉, a0, a0, . . . , a0,

where there are ⌊n
2 ⌋ copies of a0. Eag(W

′
n) = Nai(Wn), which by Proposition 5 is

n
4 + 1

2 when n is even and n
4 + 3

4n when n is odd. Thus,

EagW (Wn) ≥
n

4
MajW (Wn).

These two families of sequences show that Maj and Eag are incomparable under

relative worst order analysis.
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Although Maj and Eag are incomparable for the FIU problem under relative worst

order analysis, if the number of possible items is bounded by some constant N , the

situation changes. Now Maj is deemed the better algorithm.

Theorem 34. For the FIF problem, according to relative worst order analysis,

WRMaj,Eag = ∞.

Proof. The separation from Theorem 33 also holds here, so

MajW (En) ≥
(

n

2
− 3 +

8

n

)

EagW (En).

To show that Maj and Eag are comparable, we show that for any input sequence

I, MajW (I) ≥ EagW (I)−N .

For some input sequence I, let k ≤ N denote the number of items occurring exactly

once in I. In a worst ordering of I with respect to Eag, all these k items would

come first, followed by two occurrences of an item with lowest frequency x
n in I

(other than the items occurring only once). Thus, Eag’s aggregate frequency is

k 1
n + (n− k) xn .

For Maj, in a worst ordering of I, it would buffer all of the k items occurring only

once in I. Clearly, such an item stays in the buffer exactly twice, since the next item

is different and decrements the counter to zero. For the remaining time, the buffer

must contain an item of frequency at least x
n . Thus, Maj’s aggregate frequency is

at least 2k 1
n + (n− 2k) xn .

Using these two bounds for the respective algorithms’ aggregate frequencies on a

worst ordering of I, MajW (I) ≥ EagW (I) + k 1
n − k x

n . Since k x
n ≤ N n

n = N ,

MajW (I) ≥ EagW (I)−N .

6. Conclusion and Future Work

We have considered the frequent items problem for streaming as an online problem.

Two versions of the problem have been studied, namely the FIF problem, where we

assume that the universe is finite, and the FIU problem, where the universe size is

unbounded. Three deterministic algorithms, Nai, Maj, and Eag have been com-

pared using three different quality measures: competitive analysis, relative interval

analysis, and relative worst order analysis. Since, for the FIU problem, performance

ratios of algorithms depend on the length of the input sequence, we have used the

competitive function and the relative worst order function in comparing the algo-

rithms. On the other hand, for the FIF problem, performance ratios of algorithms

are mostly independent of n and more often dominated by a function of the universe

size, so we have used competitive ratio and relative worst order ratio. Tables 1 and 2
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summarize the comparison of the three algorithms for the FIF and FIU problems,

respectively.

Measure Nai vs. Maj Nai vs. Eag Maj vs. Eag

Competitive

ratio

√
N+1
2 , N − 1

(Nai is better)

√
N+1
2 , ∞

(Nai is better)

N − 1, ∞
(Maj is better)

Relative

interval

[− 1
4 + 1

4N , 1
4 − 1

4N ]

(equivalent)

[− 1
4 + 1

4N , 1]

(Nai is better)

[− 1
2 + 1

2N , 1]

(Maj is better)

Relative worst

order ratio

N
2

(Nai is better)

∞
(Nai is better)

∞
(Maj is better)

Table 1. The comparison of the three algorithms for the FIF problem as a function of the universe

size.

Measure Nai vs. Maj Nai vs. Eag Maj vs. Eag

Competitive

function

√
n
2 and n

2

(Nai is better)

√
n
2 and n

2

(Nai is better)

n
2 and n

2

(equivalent)

Relative

interval

[− 1
4 ,

1
4 ]

(equivalent)

[− 1
4 , 1]

(Nai is better)

[− 1
2 , 1]

(Maj is better)

Relative worst

order function

n
4

(Nai is better)

n
2

(Nai is better)
incomparable

Table 2. The comparison of the three algorithms for the FIU problem as a function of the length

of the input sequence.

Comparing across the two tables, results are similar. With regards to relative in-

terval analysis, the results for FIU follow from results for FIF for N going towards

infinity. For the other entries, there are small variations that do not alter the con-

clusion as to which algorithms is better, with two exceptions, both involving Maj

and Eag. When comparing Maj and Eag using competitive analysis, they are

equivalent in the context of the FIU problem, but Maj is better when considering

the FIF problem. Similarly, when comparing Maj and Eag using relative worst

order analysis, they are incomparable with regards to the FIU problem, but Maj is

better for the FIF problem. Technically, this is because Eag’s advantage over Maj

in the worst case sequences for Maj can be controlled within an additive constant

depending on N in the case of the FIF scenario. Intuitively, the FIF problem must

be the more reasonable model in many cases. If one is interested in keeping frequent

items in the buffer, then this must be for scenarios where many items appear with
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some non-negligible frequency, so there is a limit to how many items there could

be. Thus, it seems positive that Maj is deemed the best algorithm in this scenario

in comparison with the completely non-adaptable Eag.

All three analysis techniques studied here are worst case measures. According to

both competitive analysis and relative worst order analysis, Nai is the best possible

online algorithm, and according to relative interval analysis, it is as good as Maj

and better than Eag. This is a consequence of Nai being very adaptive and, as a

result, good at avoiding the extreme poor performance cases. Both Maj and Eag

attempt to keep the most frequent items in the buffer for longer than their observed

frequencies would warrant. The heuristic approaches hurt these algorithms in the

worst case.

Relative interval analysis compares the algorithms on the same sequence in a man-

ner which, in addition to the worst case scenarios, also takes the algorithms’ best

performance into account to some extent. This makes Maj’s sometimes superior

performance visible, whereas Eag, not being adaptive at all, does not benefit in the

same way from its best performance. In some sense, Maj’s behavior can be seen

as oscillating around the behavior of Nai, with worse behavior on some sequences

counter-acted by correspondingly better behavior on other sequences.

It seems that the problem would benefit from supplementary analyses based on

performance measures that are not worst case measures. To that end, natural per-

formance measures to consider would be bijective and average analysis [1] or other

techniques based on analyses of expected results. However, due to the notion of the

aggregate frequency calculated over the whole sequence, it is somewhat difficult to

apply any average case measures, though one could explore empirical options. In

this respect, an extension of this work would be to consider other frequency models.

Becchetti et al. [2] studied the aggregate maximum of online streaming, where the

maximum at each time step is calculated from a window of fixed size; also called

the sliding window streaming model. Another option is to consider the ephemeral

frequency [11], where the frequency of an item a at time t is calculated over the

first t items of the input sequence, i.e., f t
I(a) = |{i≤t|bi=a}|

t . In both the sliding

window streaming model and the ephemeral frequency model, the frequency of an

item does not depend on the future part of the input. Another natural extension of

this work is to consider multiple buffers, which also allows for a richer collection of

algorithms [3], or more complicated, not necessarily discrete, objective functions [8].
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