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Abstract Multi-coloring on the path is a model for frequency assigntrie linear cellular
networks. Two models have been studied in previous papelts:roay either have finite or
infinite duration. For hexagonal networks, a variation eftodels where limited frequency
reassignment is allowed has also been studied.

We add the concept of frequency reassignment to the mod&teaf cellular networks
and close these problems by giving matching upper and lomamdbs in all cases. We prove
that no randomized algorithm can have a better competiitre than the best deterministic
algorithms. In addition, we give an exact characterizatibthe natural greedy algorithms
for these problems.

All of the above results are with regard to competitive asislyTaking steps towards a
more fine-grained analysis, we consider the case of finite aall no frequency reassign-
ment and prove that, even though randomization cannot Ihi@gompetitive ratio down
to one, it seems that the greedy algorithm is expected optmaniform random request
sequences. We prove this for small paths and indicate itrerpatally for larger graphs.

Keywords Online algorithms; graph coloring; competitive analysis.

1 Introduction

An online algorithm is an approximation algorithm that ssha problem without knowing
the complete input to the problem from the beginning. Theiir{pften called the request
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sequence) is given to the algorithm step by step, and at égghtse online algorithm must
make a decision regarding the part of the input (the reqyeesBented to the algorithm in
that step. Most often, this decision is irrevocable, butstimmes relaxations of this require-
ment are of interest. We follow the tradition from the areapproximation algorithms and
measure the performance of an online algorithm using cadtiveeainalysis [1,6,11,10],
comparing the algorithm’s performance to that of an optiaf#éiine algorithm.

In this paper, we work witltost minimizationLet ALG(I) denote the cost of an online
algorithm ALG on an input sequenteand let OPTl) denote the cost of an optimal offline
algorithm on that input sequence. The algorithm ALG is ehltecompetitivef and only
if there is a constanb (independent of) such that for any input sequence, it holds that
ALG(l) < cOPT(l) +b. The infimum over alt for which ALG is c-competitive is called
the (asymptoticcompetitive ratioof ALG. Establishing the result above usitig= 0 in
the inequality is referred to as ttebsolutecompetitive ratio. Absolute competitive ratio
results are often less interesting when considering lowends since a few short request
sequences can be the sole cause of a large value. When corgsigigper bounds, results
obtained using the absolute competitive ratio may be cporedingly stronger.

1.1 The Problem

The motivation for this work comes from frequency allocatia cellular networks Such
networks consist of base transceiver stations (BTSs), @aaring a cell. Each call within a
cellis assigned a frequency for communicating with the B ESs in neighboring cells may
interfere and, hence, cannot use the same frequencied.dhalr results, we are simply
working with the underlying graph where BTSs are interpteds nodes in the graphs and
the possible interference as edges. Frequencies are eathglicolors and as bandwidth is
limited, one wants to keep the number of frequencies used low

The degree of detail and the type of scenarios that are nestiediry. Calls may be finite
or infinite. In the case of finite calls, we say that a cattasmcelledwvhen it ends. Sometimes
a limited degree of frequency reallocation is allowed at\g&egilocation or neighboring
locations.

With regard to graph structure, researchers have focuseeliofar networks in the form
of paths (also referred to #imear cellular networks) antiexagonayrids, since these graph
structures model different types of connection propeitiesllular networks. The models
are also known as thaghwayandcity models, respectively. In this paper, we only consider
the highway modelgathg.

Thegraph coloringproblem is well known [9]: the given graph must be colored.inls
a way that no two neighboring nodes receive the same coloicaffsidermulti-coloring,
where each node must be given a number of colors. The reqgeitemthat the same color
is only in use once per node and the set of colors used at anydigbboring nodes must be
disjoint. A coloring fulfilling these requirements is calllegal. We model colors using num-
bers starting from one, and oabjectiveis to minimize the maximal color used anywhere
in the graph.

In the online version of the problem, the graph is known from the beginning we do
not know in advance how many colors each node must be givars, Brequest is simply a
node in the graph, and the online algorithm must assign atit{aaal) color to that node.

In the case where requests may be cancelled, the time of tieeltion (if any) is
unknown to the online online algorithm until the time whee ttancellation takes place.
This case is called thgeneralcase, since it contains the case where cancellations do not
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occur as a special case. The objective is still to minimizerttaximal color used at any
node after any request.

Usually when working with online algorithms, decisions @&revocable, i.e., once a
color is assigned to a node, this decision is final. If the @igm is given some limited
power to change the colors, we refer to thigesoloring An algorithm isd-recoloringif,
in the process of treating a request or cancellation, it nreaglor up to a distance away
from the node of the request/cancellation.

We now discuss the results most closely related to ours. gimeitology used in dif-
ferent papers has been inspired by terms from computercsigraph theory, and commu-
nication engineering. We have decided on a uniform termgwlin the rest of this paper,
using graphs and graph coloring concepts.

1.2 Related Work

Previous work relates to the path or to hexagonal graphs.

The path: For the path, there are no previous results on multi-codpwitth recoloring al-
lowed.

We first state the known results for the case without cartgatis. Chan et al. [2] ana-
lyzed the greedy algorithm, REEDY, which always uses the smallest color resulting in a
legal coloring. They showed that the absolute competitit® rof GREEDY is % and that
this is optimal. For the asymptotic competitive ratio, tietypwed a lower bound c§ and
proposed an algorithm, ¥8RID, with a competitive ratio of5— /5)/2 ~ 1.382. Chrobak
and Sgall [4] closed the gap, designing an optimal algori#BuUCKET. These asymptotic
results are obtained as the number of colors used approguimity; not using the number
of requests, as is usually the case.

For the general case, Chan et al. [2] showed that the (alesatutvell as asymptotic)
competitive ratio of ®EEDY is 2. They defined an algorithm,dkrow, and proved it
optimal with regard to the absolute competitive ratio, iggte ratio of%. The upper bound
of g carries over to the asymptotic competitive ratio for whidir@ak and Sgall [4] proved
a lower bound oft!.

Hexagonal graphs:We give a brief account of the results on hexagonal graphes&are all
for the general case and are mainly concerned with a distidlsetting where the algorithms
are calledd-local if they are allowed to view and change the coloring of nodesaup
distance ofl away from the current request/cancellation.

Without recoloring, no online algorithm is better than 2Zvgeetitive [8].

With recoloring allowed, the results are significantly bettn [13], Witkowski and Ze-
rovnik introduced a}i-competitive 1-local algorithm. Janssen et al. developéd:ampet-
itive algorithm for the case of 4-locality [8], strengtheine 2-locality by Sparl and Ze-
rovnik [12]. Janssen et al. [8] also showed general lowendsdor hexagonal graphs: No
d-local algorithm can have a competitive ratio better thanz}ﬁl). For O-recoloring, the

lower bound can be improved @) independent of the view distance.
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1.3 Our Results

We consider all cases for the path with recoloring allowedyjging matching upper and
lower bounds. Our results are valid for the absolute as veetha asymptotic competitive
ratio. When making coloring or recoloring decisions, trgoaithms considered inspect only
immediate neighbors.

For the general case, we devise a 1-competitive 1-recglatgorithm, closing the prob-
lem for alld-recoloring algorithmsj > 1. For O-recoloring algorithms, we argue that known
general bounds carry over, and that Chrobak and S@Jtsmpetitive 4-BRJCKET algo-
rithm is optimal. Having closed this problem, we also coasithe most natural adaption
of GREEDY to O-recoloring, and show that its competitive ratio is ekatwo. For the case
without cancellations, these results carry over.

As is most often done, for the lower bound results above, weraplicitly assuming
deterministic algorithms. It is natural to consider whetf@domized algorithms can beat
the deterministic lower bounds, as is the case for many qtudslems. We prove that ran-
domization does not help in any of these cases. This congpleéecompetitive analysis of
this problem.

Taking steps towards a more fine-grained analysis, we atlioate that the fact that
randomization does not help may be due to select non-unifarrst-case sequences, since
we can show that the simple algorithmRrEeDY, is asymptotically expected 1-competitive
(expected optimal, that is) on a path consisting of just fodes with respect to a uniform
distribution of requests to the four nodes. Thus, even thoagdomization can be proven
not to help, the deterministically non-optimal greedy aidon is expected optimal on such
a uniform distribution. For larger graphs, we provide eipental results indicating the
optimality of GREEDY under this distribution.

2 Competitive Analysis

We first establish results for the general case, since theruppinds established here im-
mediately carry over to the case without cancellations.

2.1 The General Case

In this setting, requests may be cancelled again, freeingegareviously used colors for
possible reuse. Since it is requests that are cancelledthiticolor used when this request
was issued that is becoming available for possible reusgpaesed to an arbitrary color in
use at that node. Thus, we will sometimes talk about the stcheing colored rather than
the node receiving an additional color.

2.1.1 Recoloring distance 1—a 1-competitive algorithm

First, we consider 1-recoloring algorithms. The posgipiid recolor at neighboring nodes
when a new request arrives allows us to design a 1-commetiiine algorithm. Since
the upper bound carries over to larger recoloring distaribés closes the problem fal-
recoloring,d > 1.

The nodes are divided into two sets callggper and lower, such that every second
node belongs tapperand the remaining nodes belongléaver. The following invariant is
maintained: After each request,
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— each node iower uses consecutive colors starting with the color 1.
— each node inpperuses consecutive colors ending with a color no larger thanptimal
number of colors for the sequence of requests seen so far.

Informally, when a color requestarrives at a node in upper, the color interval ot/ is
extended below, if possible. Otherwise, it is extended ab@hen a color requestarrives
at a nodev in lower, the color interval is extended above, i.e., the lowestroolmwt already
in use atv is used. For each neighbor ofif cis already used for some requesit that
neighbor,s is recolored using the lowest possible color. When a requesta nodev is
cancelled, the request awith the highest color is recolored using the coboof r (if cis
not the highest color used @t To make it precise, we give the details in Algorithm 1. This
also serves as an introduction to the notation we use in thafpof theorems to follows.

Consider a path afnodes, numbered from 1 througH_et f;(v) denote the set of colors
assigned to node after the first requests, starting with request 1. We introduce two addi-
tional nodes, 0 and+ 1, such that each of thenodes has two neighbors. The extra nodes
do not receive any requests and therefore no colors. Als;dtational convenience, we
definefo(v) = 0 for all v. To smoothly handle initially empty sets of colors in thealghm,
we define that iff; (v) is the empty set, then miia(v) = maxf;(v) = 0.

The new 1-recoloring algorithm, EEDYOPT, is given in Algorithm 1.

Algorithm 1 The 1-recoloring algorithm, 8EEDYOPT, treating thdth request.
1. Assume that th&th requestr, is to nodev

2: min<—min f;_1(v)
3: max«+ maxf;_1(v)
4: if r is a color requeghen
5: if v e upperthen
6: if fi_1(v) =0then
7 giver color max fi_1(v—1)U fi_1(v+1))+1
8: elseifmin>1 A min—1¢ fi_1(v—1)U fi_1(v+1) then
9: giver colormin—1
10: else
11: giver colormax+1
12: else
13: * v € lower*/
14: if there exists a requestt nodev — 1 with colormax+1 then
15: recolors, giving it color maxf;_1(v—1) +1
16: if there exists a requestt nodev+ 1 with colormax+-1 then
17: recolors, giving it color maxf;_1(v+1) +1
18: giver colormax+1
19: else
20: [*r is a cancellation */
21 if the color ofr is different from max;_1(v) then
22: recolor the request that has color nfax (v), giving it the color ofr
23: remove request

Theorem 1 Algorithm GREEDYOPT is correct and 1-competitive.



6 Christ, Favrholdt, Larsen

Proof It is easily checked that after any numibef requests,

— each nodev € lower is colored with a sef1,2,...,c} of consecutive colors, where
c<min(fy(v—21)uU fr(v+1))if fi(v—1)Ufi(v+1)#0

— each node € upperis colored with a sefd,d+1,..., e} of consecutive colors, where
d>maxfi(v—1)U fi(v+1)) if fr(v—1)U fr(v+1)#0.

This immediately implies that the coloring is legal. Furthere, whenever a new color
c is used at a node, we have thatfi(v— 1)U fi(v) = {1,2,...,c} or fi(v)U fy(v+1) =
{1,2,...,c}. Hence, the coloring is optimal. a

2.1.2 Recoloring distance 0—optimality and the perforneanitGREEDY

A lower bound ofg for multi-coloring on the path when there are no cancelieior re-
colorings was given in [2]. For the sequence used, O-recgaives no extra possibilities,
and, hence, this lower bound carries over to O-recoloriggrihms. For the upper bound,
the proof by Chrobak and Sgall [4], carries over to the gdrearse (even though the algo-
rithm does not use recoloring). Their algorithm 4E&ET is %-competitive and therefore
optimal, so this subproblem is completely settled.

Because of its simplicity, it is also interesting to consittee most natural greedy algo-
rithm for this problem: At a request for a new colorREEDYADAPT colors using the small-
est color resulting in a legal coloring, just likeRGEDY. At a cancellation, EEEDYADAPT
recolors the request with maximal color using the color latée due to the cancellation.
Effectively, this can be thought of as always cancellingrétiest with maximal color.

For the general case with no recoloring allowed, Chan e2hstjowed that the compet-
itive ratio of the greedy algorithm is 2. The lower bound wasven by preventing reusage
of colors by forcing pairs of nodes to lose all colors theyenav common [3]. When re-
coloring is allowed, this does not necessarily happen. Wewave can still show that the
competitive ratio of @EEDYADAPT is exactly 2.

Theorem 2 For O-recoloring, the competitive ratio GBREEDYADAPT is 2.

Proof For the upper bound, assume the nodes on the path are nuntbesstutively and
that the maximal competitive ratio is reached when givirg(th- 1)st request and that this
is to nodev. Due to greediness of EEDYADAPT, the new maximal color cannot be larger
than|fi(v)| + 1+ |fi(v—1)| + [fi(v+1)|. OPT uses a color which is at leds$t(v)| + 1+
max{|fi(v—1)|,|ft(v+1)|}. Thus, the ratio is bounded by

[fe (V)| + 1+ | fe(v—21)| + | fr(v+1)]
[T (V)| + 1+ max{|f(v—1)|,|f(v+ 1)}

[fe(v)|+ 1+ 2max{|fi(v—21),| fi(v+1)|}
R+ 1+ max{|fi(v—1)[,[fi(v+ 1)[}

<2

However, also note that the ratio could be arbitrarily clus2.

Now we turn to the lower bound. We number the nodg 1., ¢ and decide on an op-
timal number of colors exponential i) defined byn = 2L5%%). More precisely, we give a

sequence of requests and cancellations where OPT at naysesinore than colors. This
can be ensured by arranging that no two neighboring nodesheve more tham uncan-
celled requests together. Since OPT knows the entire sequeradvance, and therefore
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Algorithm 2 The construction of the worst case sequence fRREEDYADAPT.
1: /* Initialization */

2: Request2,n/2)
3: Request{l,n/2)
4: Cancel(2,n/2)
5. Request3,n/2)
6: fori=1to 2log,n—2do
7: [* Phase */
8: S zﬂ/ighl /* halve sin every second iteration */
9 Requesti+1,s)
10: k+3
11: while there are still requests remaining from the previous pdase
12: Cancel(i +m,s), wherem € {0,2} is chosen such that the highest colors
remaining from the previous phase are found at riede
13: Requesti +k,s)
14: k< k+2 mod4

alson, it can maintain a coloring where every second node usescatige colors in in-
creasing order starting from one, and the other nodes usecotive colors starting from
in decreasing order. At any cancellation, it can recolor &gntain this invariant.

The construction of the sequence is done in an initialiresiep followed by a number
of phases. We show that during the last phages & YADAPT uses 2 — 2 colors, obtaining
a ratio of 2— % =2- m Hence, for arbitrarily long paths, we get arbitrarily dds
a ratio of 2.

The construction of the sequence is described in Algorithive let Requestv,m)
denote a sequence af requests to each of the nodes-4i, i =0,1,..., U’%"J. Simi-
larly, Cancel (v,m) denotes a sequence of cancellations at each of the nodes- 4i,
i=01,...[Z]

The proof is self-contained, but it may help to refer to FegiB and 4 at the end of the
paper, where we illustrate Initialization and Phases 1+4 f015. Node numbers are shown
horizontally, and color numbers are shown vertically. We white and black to indicate the
phases in which requests were made. Black is used for regfrest an odd numbered
phase.

Note that, after Phaseat least’ — 1 — 2i nodes still have uncancelled requegts- @i
nodes, if¢ is odd). Thus, after the last phase, there will be requestd teast/ —1—2-
(2logyn—2) = ¢+3—4-[ 2] > 1 nodes.

During initialization, GREEDYADAPT usesn colors. In each of Phases 21 and 2,
i>1,it introducesé,%l new colors compared to the previous phase. Hence, Phasatains
§ more colors than Phase 2 2. It follows that, in the last phase,REEDYADAPT uses
n+5+5+...+2=2n—2colors. |

2.1.3 Randomized algorithms

We note that ford-recoloring algorithms, id > 1, then randomization cannot contribute
anything further, since we have an optimal algorithm. &et 0, Theorem 3 of the next
section gives us a randomized lower boundg—‘ofnatching the deterministic upper bound
from this section.
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2.2 Multi-Coloring without Cancellations

The optimal algorithm from the previous section is alsomptifor the more restricted case
without cancellations, except for O-recoloring. For theecaf 0-recoloring algorithms, we
observe that the lower bound @ffrom [2] carries over, since the lower bound sequence
does not contain deletions. Hence, the 4B ET algorithm from [2] is also optimal for the
case without cancellations.

Thus, the only remaining question is whether randomizatiight beat the determin-
istic lower bound of% for O-recoloring algorithms. As usual, the hope comes frbenfact
that different deterministic strategies do not necesshale the same worst-case sequences.
Thus, in addition to randomization possibly giving bettesults in practice, it may be pos-
sible to prove a better competitive ratio (against an obligi adversary [1]). However, we
can establish that the search for such a randomized algoi#lin vain. To settle this, we
use Yao's principle [14, 1] and establish that no randomagdrithm can be better than the
best deterministic algorithm:

Theorem 3 For a path with at least eight nodes, no randomized onlisrecoloring algo-
rithm can have a competitive ratio smaller théragainst an oblivious adversary.

Proof Let the eight nodes be labelleg, v, ..., vs. Let {0]-”} denote the set of all possible

request sequences of lengthWe define a probability distributiog’(j) on this set. We
will allow multiple requests to be given in each step; with arencumbersome formulation,
these could just as well be given one at a time. At Step fequests arrive at nodg and

% requests arrive at nodg. At Step 2, with probability%, at each of the nodeg andvs, %
requests arrive (Case 1). With probabilgyat each of the nodeg andvs, j requests arrive
(Case 2). All other request sequences are assigned zerahjilityb

In Case 1, an optimal algorithm would assign different cotorthe requests from Step 1,
so that the colors used at nodesand vg, respectively, can be reused for the upcoming
requests at nodesg andva, respectively, resulting in-Z; = 5 used colors. In Case 2, no two
neighboring nodes receive requests. Thus, the optimatigigowould assigrnvs and vg,
as well as the subsequehtrequests to each of andvg the same colors (from 1 through
1), so that the overall number of used colors wouldib&he expected cost of the optimal
algorithm would therefore be[BPT =3-3+1.7 = 2n.

Let.# denote the set of all deterministic algorithms for the peofl We derive a lower
bound on the performance of any algorithm in this set. After ¢oloring in Step 1, let
denote the fraction of the colorsaf that were not used ag. Thus, up to this point, a total
of (14-x)} colors have been used.

In Case 1, thg1—x)} colors used at bothvz andvs cannot be used at; and vs.
Thus, 21— x)3 new colors have to be assigned, resulting in an overalltre$gl + x) § +
2(1-x)§ = (3—x)§ colors. In Case 2, at Step 2, the lowest total number of uskxiscis
(14x)4, achievable by using the same colors as in Step 1. Therdferexpected value of
any online algorithm ALG on the given probability distribr of y'(j) cannot be smaller
than3(3—x) 5 +3(1+x) 5§ =13.

A prerequisite for using Yao's principle is that the cost@®PT goes towards infinity for
increasing length of the request sequences, and this idycfatilled here. Then the lower
bound of any randomized online algorithm is at least as lasgée limit forn going towards
infinity of the quotient of the infimum of the expected valueatifdeterministic algorithms
to the expected value of the optimal algorithm:
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iminf o< B0 A (o)) > liminf 2 = &
e B [0PT(op)] e gn 3

Since all requests given to a node are given consecutivalyng O-recoloring available
gives no extra possibilities. ad

3 Uniformly Random Request Sequences

Having completely settled all issues regarding competi@imalysis of the problem, we ini-
tiate a more fine-grained analysis of the probabilisticessoy investigating uniformly ran-
dom request sequences in the model without cancellation.

3.1 The Smallest Non-Trivial Graph

The following result shows that on paths of four nodes wherpiests are given to nodes
uniformly at random, ®EEDY is asymptotically expected 1-competitive (expected oglim

If two requests for different nodes are given the same calenefer to these asyzair.
A request which has been given a color different from anyrogiden to any other request is
referred to as aingleton If we have a singleton and a new request (at a different node)
is given the same color as the singleton, theandr’ become a pair andis no longer a
singleton. Clearly, a new request either becomes a singtatbbecomes part of a pair and
in the process eliminates a singleton.

On a four-node path, we denote the nodeshys, v3, andv,. We refer tov, andvs as
innernodes and the two others asternodes.

We start with two simple observation:

Lemma 1 When usingSREEDY, there cannot be singletons on nodes that are a distance of
more than one apart.

Proof Assume to the contrary that this happened. Then considdirtesingleton to be
coloredc at a node at a distance of more than one away from another ridusingletons,

the latest of which was given colaf. Clearly, because of greediness, we cannot have that
c > c, soc < ¢'. However, then the cola’ was not given in a greedy fashion, sincenust
have been available. We can conclude that singletons naideren at most two consecutive
nodes. ad

Lemma 2 On a four-node path, unless a configuration has singletonisath inner nodes
and nowhere els€GREEDY has used the optimal number of colors.

Proof We consider all cases, as limited by Lemma 1. Assume thabalietons reside on an
outer node and on its neighbor, and assume without loss &gty that these two nodes
arevi, andvs. Since all pairs must have one of their two requests on onleesit nodes, all
colors used on3 andv, are also used ow andv,. Thus, since the total number of requests
tov; andv; is a lower bound on the number of colors neede”EEDY'’s coloring is optimal.
This argument includes all situations where all singlet@side on one node. ad
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A sequence of independent stochastic variaf}¢$ . ;, where ProbX; = 1] = ProX; =
—1] = 1, is called asimple random walf5]. It is well known that if we defindy, = 1, X,

then lim e ‘T"H \/7 [7]. We use this fact in the form of the following equivalent

statementEHTnH < \/%f+en, where we use, as notation for some function such that

&, € o(y/n). Due to the absolute value, this is equivalent to considesime-sidedandom
walks (also called a random walk with a barrier or with reflac}, where one then does not
need the absolute value. A one-sided random walk is definactlgxas above, except that
whenT; = 0, then ProbX;1 = 1] = 1. We only use the following:

Observation 1 E[T,] < \/%ﬁ—r &n.

Let Sj be the stochastic variables denoting the number of singdato nodev; after the
ith request. Defin& = 0 and fori > 1,

0, if 39,9 =
S=1¢5%.,9, ifs>00r§">0

|~ S7|, otherwise

Lemma 3 The expected value of & bounded from above W/%\m-i- &n.

Proof Fori > 1, we define the stochastic variable= S — S_1. We will prove that{X;} is
a one-sided simple random walk from which the result willdal

We consider the cases in the definitionSpf;:

If 591§ 1 =0, clearly,X = 1 with probability one.

If § ,>00rS", >0, we assume without loss of generality tBat, > 0. Then, accord-
ing to Lemma 151371 =§' , =0.Byarequesttw; orv,, S (like S_1) would be calculated
by the second case in the definition, and cleaX]ys= 1. A request toss would eliminate
a singleton orv1, andS would be calculated by the first, second, or third case, ddipgn
onS ; andS ;. In each caseX; = —1. By a request tos, S would be calculated by the
second case, & ; > 2, by the first case, i§ ; = 1 andS? ; = 0, and by the second or
third case otherwise. In each ca¥e= —

In the remaining case, we have tigt, = §'; = 0 and that§ ; >0 orS$*; > 0.
Assume without loss of generality thgt ; > S ,. If ¥ , =S ;, thenS_1 =0andX =1
with probability one §, like S_1, would be calculated by the third case). Otherwise, we
haveX; = 1, if vy or v, is requested, ang = —1, if vz or v4 is requested. (Itﬁ{1 > 0, then
S is calculated by the third case in the definitionsi’j1 =0, then§ is calculated by the
second case, if; is requested, and by the third case otherwise.)

Thus,{X;} is a one-sided simple random walk and the result follows f@mservation 1.

O

Corollary 1 After m requests, given uniformly at random to nodes in a-fmde path
graph, if exactly one inner node and no outer nodes has dimgie the expected number

of singletons is at mos\}/%ﬁH— Em.

Proof This follows from Lemma 3 and the observation that, by deéinibf S, in the case
of the corollary formulationS simply counts the number of singletons on the inner node.
O
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We can now prove that under a uniform distribution of regsiesteaning that requests
will be for each of the four nodes with probabiligleach, @REEDY is asymptotically ex-
pected 1-competitive.

Theorem 4 For a path of four nodes;GREEDY is asymptotically expected optimal under a
uniform distribution of requests.

Proof By Lemma 2, REEDY is optimal unless it enters a configuration with singletons o
both of and only on the inner nodes. If the configuration cleareyvay from that, 8EEDY
is optimal again. Thus, as a worst-case consideration, \&kyzsthe asymptotic behavior
for this case, i.e., in the rest of this section, we assumievthaare in a configuration with
singletons on both of the inner nodes and only on these nodes.

Let X; be the stochastic variable such that

- J 1, iftheith request becomes a new singleton
X = { —1, if the ith request eliminates a singleton

By the case assumption, if thidh request is to one of the two inner nodes, it becomes
a new singleton, and otherwise, it forms a pair with an alyemadsting singleton. Clearly,
ProlX; = 1] = ProlfX = —1] = 1.

By Lemma 2, the only way to enter this state with singleton$oth and exclusively
on the inner nodes is by first having singletons exclusivelyoe of the inner nodes, and
after that get a request to the other inner node.YLdenote the number of singletons just
before this step, i.e., the number of singletons at the ilexst then all the singletons were
exclusively on one inner node. LEtdenote the number of pairs present at that time. Thus,
m=Y + 2Z is the number of requests up to this point.

We consider the situation aft@rrequests in this state and letefer to the entire input
sequence witn = m+ p requests. Le§, = 3P | X;.

GREEDY ends withY + S, singletons and thus mak@? pairs, soituseZ+Y + @
colors. The sequendgX; } is a one-sided simple random walk, so by Observatide$;] <

\/%\m+ &p. By Corollary 1LE[Y] < \/%/EJr &m. Additionally, Z+Y = ™Y Y = ™Y
By linearity of expectation,

m+Y p+$3 ITH- \/%w/m‘i‘gm p+ \/%\/ﬁ-i-(‘:p
E + < + .
2 2 2 2

Any algorithm, also OPT, must use at least n{ix+ %7Z+Y} colors. These ex-

pressions coincide foY = p. We proceed by treating the two casesyok pandp <Y
separately.
First, consider the case whe¥e< p. ThenZ + Y12 is the maximum. Sinc& + Y52 =

m-Y Y+p _ m4p
2 Tz =7 .weget

2 " 2
E[GREEDY(I)] mﬂﬁfnﬁ +p+\/;2‘/ﬁ+€p

E[OPT()] — mip

=1+&n+¢p,

wheregl, = &m+ \/%\Fn ande), = gp+ \/%\/5
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Next, consider the case whepe<Y. ThenZ +Y is the maximum. Sinc& +Y =
mY +Y = ™Y, with the same definition of/, ande}, we obtain that

mﬂ/%/ﬁwsm n pﬂ/%\/mep
2 2

E[GREEDY(l)]
E[OPT()] — mT”
mﬂ/%fmﬂm pﬂ/%/?nsp
< 2 + 2
- m+p
2
:1+£m+£p.

Any constant upper bound on the terms dependentandp in &, -+ &, can be absorbed
in the additive constant in the definition of the competitimdo. Form and p approaching
infinity, the additive term approaches zero, so the comnipetiaitio approaches one. 0O

To extend the proof above to general paths, an obvious gyrateuld be to transfer the
result for a four-node graph to a result for a four-node comepd on a longer path. Then
convert the expected result to a low probability of beingdamy from the expected value.
The probabilities of these finitely many groups of four nodas be summed up, and the
result converted back to an expected value for the larggrhgitdowever, it is not obvious
how to establish the first partial result, since the proafrggly relies on properties coming
from knowing that there is no interference from other neigiiy nodes of;, andv,. And,
in fact, we are not convinced such a result holds. We willnreta a discussion of this in the
concluding remarks.

3.2 Experimental Results on Larger Graphs

We have proved that REEDY approaches optimal performance for an increasing number of
requests on a path of length four. Empirical evidence sugdeat GREEDY is approaching
a performance ratio of one compared to OPT for longer pathsels

We have run a simulation using a uniform distribution on patifith a varying number
of nodes, the result of which can be seen in Figure 1.XFaeis displays the density, i.e., the
average number of requests per node. As measuring pointsaveeused densities that are
ten times and fifteen times powers of two, i.e., of the form2@nd 15 2, up to 10000.
We found that the variance was quite high, so for each maagpnint, we have taken the
average of 100 runs.

Variance is, not surprisingly, greatest for small densitidowever, after some initial
fluctuation for small densities, all curves reach a maximéer avhich the value decreases
for increasing densities. Notice also that the curves faphs with more nodes consistently
appear above curves with fewer nodes, but then seem to haliesimore negative, that
is) slope. Thus, it appears plausible that these curvesl@ube approaching one.

4 Summary and Future Work

Regarding competitive analysis, we have settled all iskrasulti-coloring on the path re-
gardless of whether or not cancellations may occur, whetheot randomization is applied,
and to what extend recoloring is permitted. In addition, \&eehcharacterized the behavior
of the natural recoloring adaption of the greedy algorithm.
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Performance of Greedy on a line

108 T T T T T
= 50 nodes
107 Lo/ 40 nodes i
20 nodes -

if e 10 nodes
108 i 4 nodes -----

1.05

T

1.04

1.03

Greedy/Opt

osiicd S|
1

1.02

101 ¢

0.99 1 1 1 1 1
0 2000 4000 6000 8000 10000

Request Density

Fig. 1 Simulation of REEDY on paths of different lengths.

Fig. 2 A “bad” configuration: 32 times as many colors as necessary are in use, and a requegtiotiae
inner nodes will increase the number of colors.

In extension of that, we have initiated the analysis of pbilsic issues. There are
many directions this work could take. We have started camiid uniformly distributed
reguest sequences with some analytical and some expealmenk. This could be contin-
ued, generalizing our results, considering other distidims, or proceeding in the direction
of hexagonal grids.

Itis not a trivial matter to extend the results from the fowde case. In fact, it is possible
that the greedy algorithm is not expected optimal for lonzgeths, depending on how this is
defined. We believe that configurations similar to the ondguife 2, though occurring with
low probability, are the cause of the peaks seen in the axgeaital results for not too dense
request sequences. Notice also that for such configuratioegrobability of progressing
towards a larger competitive ratio is temporarily more thamalf, which means that we do
not see how to apply random walk techniques to obtain regtdishigh request density, we
are convinced that the small probability of entering thigetyf configuration is outweighed
by the higher probability of getting a large number of reqsi¢s two neighboring nodes,
which will force any algorithm, including OPT, to use a lotawlors, therefore giving near
optimal results for the online algorithm. We leave the faéloretical analysis of probabilistic
behavior on larger graphs as an interesting open problem.
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