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Abstract Multi-coloring on the path is a model for frequency assignment in linear cellular
networks. Two models have been studied in previous papers: calls may either have finite or
infinite duration. For hexagonal networks, a variation of the models where limited frequency
reassignment is allowed has also been studied.

We add the concept of frequency reassignment to the models oflinear cellular networks
and close these problems by giving matching upper and lower bounds in all cases. We prove
that no randomized algorithm can have a better competitive ratio than the best deterministic
algorithms. In addition, we give an exact characterizationof the natural greedy algorithms
for these problems.

All of the above results are with regard to competitive analysis. Taking steps towards a
more fine-grained analysis, we consider the case of finite calls and no frequency reassign-
ment and prove that, even though randomization cannot bringthe competitive ratio down
to one, it seems that the greedy algorithm is expected optimal on uniform random request
sequences. We prove this for small paths and indicate it experimentally for larger graphs.

Keywords Online algorithms; graph coloring; competitive analysis.

1 Introduction

An online algorithm is an approximation algorithm that solves a problem without knowing
the complete input to the problem from the beginning. The input (often called the request
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sequence) is given to the algorithm step by step, and at each step, the online algorithm must
make a decision regarding the part of the input (the request)presented to the algorithm in
that step. Most often, this decision is irrevocable, but sometimes relaxations of this require-
ment are of interest. We follow the tradition from the area ofapproximation algorithms and
measure the performance of an online algorithm using competitive analysis [1,6,11,10],
comparing the algorithm’s performance to that of an optimaloffline algorithm.

In this paper, we work withcost minimization. Let ALG(I) denote the cost of an online
algorithm ALG on an input sequenceI , and let OPT(I) denote the cost of an optimal offline
algorithm on that input sequence. The algorithm ALG is called c-competitiveif and only
if there is a constantb (independent ofI ) such that for any input sequence, it holds that
ALG(I) ≤ cOPT(I)+b. The infimum over allc for which ALG is c-competitive is called
the (asymptotic)competitive ratioof ALG. Establishing the result above usingb = 0 in
the inequality is referred to as theabsolutecompetitive ratio. Absolute competitive ratio
results are often less interesting when considering lower bounds since a few short request
sequences can be the sole cause of a large value. When considering upper bounds, results
obtained using the absolute competitive ratio may be correspondingly stronger.

1.1 The Problem

The motivation for this work comes from frequency allocation in cellular networks. Such
networks consist of base transceiver stations (BTSs), eachcovering a cell. Each call within a
cell is assigned a frequency for communicating with the BTS.BTSs in neighboring cells may
interfere and, hence, cannot use the same frequencies. In all of our results, we are simply
working with the underlying graph where BTSs are interpreted as nodes in the graphs and
the possible interference as edges. Frequencies are modelled by colors and as bandwidth is
limited, one wants to keep the number of frequencies used low.

The degree of detail and the type of scenarios that are modelled vary. Calls may be finite
or infinite. In the case of finite calls, we say that a call iscancelledwhen it ends. Sometimes
a limited degree of frequency reallocation is allowed at a given location or neighboring
locations.

With regard to graph structure, researchers have focused oncellular networks in the form
of paths (also referred to aslinear cellular networks) andhexagonalgrids, since these graph
structures model different types of connection propertiesin cellular networks. The models
are also known as thehighwayandcity models, respectively. In this paper, we only consider
the highway model (paths).

Thegraph coloringproblem is well known [9]: the given graph must be colored in such
a way that no two neighboring nodes receive the same color. Weconsidermulti-coloring,
where each node must be given a number of colors. The requirement is that the same color
is only in use once per node and the set of colors used at any twoneighboring nodes must be
disjoint. A coloring fulfilling these requirements is called legal. We model colors using num-
bers starting from one, and ourobjectiveis to minimize the maximal color used anywhere
in the graph.

In theonlineversion of the problem, the graph is known from the beginning, but we do
not know in advance how many colors each node must be given. Thus, a request is simply a
node in the graph, and the online algorithm must assign an (additional) color to that node.

In the case where requests may be cancelled, the time of the cancellation (if any) is
unknown to the online online algorithm until the time when the cancellation takes place.
This case is called thegeneralcase, since it contains the case where cancellations do not
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occur as a special case. The objective is still to minimize the maximal color used at any
node after any request.

Usually when working with online algorithms, decisions areirrevocable, i.e., once a
color is assigned to a node, this decision is final. If the algorithm is given some limited
power to change the colors, we refer to this asrecoloring. An algorithm isd-recoloringif,
in the process of treating a request or cancellation, it may recolor up to a distanced away
from the node of the request/cancellation.

We now discuss the results most closely related to ours. The terminology used in dif-
ferent papers has been inspired by terms from computer science, graph theory, and commu-
nication engineering. We have decided on a uniform terminology in the rest of this paper,
using graphs and graph coloring concepts.

1.2 Related Work

Previous work relates to the path or to hexagonal graphs.

The path: For the path, there are no previous results on multi-coloring with recoloring al-
lowed.

We first state the known results for the case without cancellations. Chan et al. [2] ana-
lyzed the greedy algorithm, GREEDY, which always uses the smallest color resulting in a
legal coloring. They showed that the absolute competitive ratio of GREEDY is 3

2 and that
this is optimal. For the asymptotic competitive ratio, theyshowed a lower bound of43 and
proposed an algorithm, HYBRID, with a competitive ratio of(5−

√
5)/2≈ 1.382. Chrobak

and Sgall [4] closed the gap, designing an optimal algorithm, 4-BUCKET. These asymptotic
results are obtained as the number of colors used approachesinfinity; not using the number
of requests, as is usually the case.

For the general case, Chan et al. [2] showed that the (absolute as well as asymptotic)
competitive ratio of GREEDY is 2. They defined an algorithm, BORROW, and proved it
optimal with regard to the absolute competitive ratio, getting a ratio of5

3 . The upper bound
of 5

3 carries over to the asymptotic competitive ratio for which Chrobak and Sgall [4] proved
a lower bound of11

7 .

Hexagonal graphs:We give a brief account of the results on hexagonal graphs. These are all
for the general case and are mainly concerned with a distributed setting where the algorithms
are calledd-local if they are allowed to view and change the coloring of nodes upto a
distance ofd away from the current request/cancellation.

Without recoloring, no online algorithm is better than 2-competitive [8].
With recoloring allowed, the results are significantly better: In [13], Witkowski and Ze-

rovnik introduced a33
24-competitive 1-local algorithm. Janssen et al. developed a4

3-compet-
itive algorithm for the case of 4-locality [8], strengthened to 2-locality by Sparl and Ze-
rovnik [12]. Janssen et al. [8] also showed general lower bounds for hexagonal graphs: No
d-local algorithm can have a competitive ratio better than 1+ 1

4(d+1) . For 0-recoloring, the

lower bound can be improved to97 , independent of the view distance.
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1.3 Our Results

We consider all cases for the path with recoloring allowed, providing matching upper and
lower bounds. Our results are valid for the absolute as well as the asymptotic competitive
ratio. When making coloring or recoloring decisions, the algorithms considered inspect only
immediate neighbors.

For the general case, we devise a 1-competitive 1-recoloring algorithm, closing the prob-
lem for alld-recoloring algorithms,d≥ 1. For 0-recoloring algorithms, we argue that known
general bounds carry over, and that Chrobak and Sgall’s4

3-competitive 4-BUCKET algo-
rithm is optimal. Having closed this problem, we also consider the most natural adaption
of GREEDY to 0-recoloring, and show that its competitive ratio is exactly two. For the case
without cancellations, these results carry over.

As is most often done, for the lower bound results above, we are implicitly assuming
deterministic algorithms. It is natural to consider whether randomized algorithms can beat
the deterministic lower bounds, as is the case for many otherproblems. We prove that ran-
domization does not help in any of these cases. This completes the competitive analysis of
this problem.

Taking steps towards a more fine-grained analysis, we also indicate that the fact that
randomization does not help may be due to select non-uniformworst-case sequences, since
we can show that the simple algorithm, GREEDY, is asymptotically expected 1-competitive
(expected optimal, that is) on a path consisting of just fournodes with respect to a uniform
distribution of requests to the four nodes. Thus, even though randomization can be proven
not to help, the deterministically non-optimal greedy algorithm is expected optimal on such
a uniform distribution. For larger graphs, we provide experimental results indicating the
optimality of GREEDY under this distribution.

2 Competitive Analysis

We first establish results for the general case, since the upper bounds established here im-
mediately carry over to the case without cancellations.

2.1 The General Case

In this setting, requests may be cancelled again, freeing some previously used colors for
possible reuse. Since it is requests that are cancelled, it is the color used when this request
was issued that is becoming available for possible reuse, asopposed to an arbitrary color in
use at that node. Thus, we will sometimes talk about the request being colored rather than
the node receiving an additional color.

2.1.1 Recoloring distance 1—a 1-competitive algorithm

First, we consider 1-recoloring algorithms. The possibility to recolor at neighboring nodes
when a new request arrives allows us to design a 1-competitive online algorithm. Since
the upper bound carries over to larger recoloring distances, this closes the problem ford-
recoloring,d≥ 1.

The nodes are divided into two sets calledupper and lower, such that every second
node belongs toupperand the remaining nodes belong tolower. The following invariant is
maintained: After each request,
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– each node inlower uses consecutive colors starting with the color 1.
– each node inupperuses consecutive colors ending with a color no larger than the optimal

number of colors for the sequence of requests seen so far.

Informally, when a color requestr arrives at a nodev in upper, the color interval ofv is
extended below, if possible. Otherwise, it is extended above. When a color requestr arrives
at a nodev in lower, the color interval is extended above, i.e., the lowest color c not already
in use atv is used. For each neighbor ofv, if c is already used for some requests at that
neighbor,s is recolored using the lowest possible color. When a requestr at a nodev is
cancelled, the request atv with the highest color is recolored using the colorc of r (if c is
not the highest color used atv). To make it precise, we give the details in Algorithm 1. This
also serves as an introduction to the notation we use in the proofs of theorems to follows.

Consider a path ofℓ nodes, numbered from 1 throughℓ. Let ft(v) denote the set of colors
assigned to nodev after the firstt requests, starting with request 1. We introduce two addi-
tional nodes, 0 andℓ+1, such that each of theℓ nodes has two neighbors. The extra nodes
do not receive any requests and therefore no colors. Also, for notational convenience, we
define f0(v) = /0 for all v. To smoothly handle initially empty sets of colors in the algorithm,
we define that ifft(v) is the empty set, then minft(v) = max ft(v) = 0.

The new 1-recoloring algorithm, GREEDYOPT, is given in Algorithm 1.

Algorithm 1 The 1-recoloring algorithm, GREEDYOPT, treating thetth request.
1: Assume that thetth request,r, is to nodev
2: min←min ft−1(v)
3: max←max ft−1(v)
4: if r is a color requestthen
5: if v∈ upperthen
6: if ft−1(v) = /0 then
7: give r color max( ft−1(v−1)∪ ft−1(v+1))+1
8: else ifmin> 1 ∧ min−1 6∈ ft−1(v−1)∪ ft−1(v+1) then
9: give r colormin−1

10: else
11: give r colormax+1
12: else
13: /* v∈ lower */
14: if there exists a requests at nodev−1 with colormax+1 then
15: recolors, giving it color maxft−1(v−1)+1
16: if there exists a requests at nodev+1 with colormax+1 then
17: recolors, giving it color maxft−1(v+1)+1
18: give r colormax+1
19: else
20: /* r is a cancellation */
21: if the color ofr is different from maxft−1(v) then
22: recolor the request that has color maxft−1(v), giving it the color ofr
23: remove requestr

Theorem 1 AlgorithmGREEDYOPT is correct and 1-competitive.
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Proof It is easily checked that after any numbert of requests,

– each nodev ∈ lower is colored with a set{1,2, . . . ,c} of consecutive colors, where
c< min( ft(v−1)∪ ft(v+1)) if ft(v−1)∪ ft(v+1) 6= /0

– each nodev∈ upperis colored with a set{d,d+1, . . . ,e} of consecutive colors, where
d > max( ft(v−1)∪ ft(v+1)) if ft(v−1)∪ ft(v+1) 6= /0.

This immediately implies that the coloring is legal. Furthermore, whenever a new color
c is used at a nodev, we have thatft(v− 1)∪ ft(v) = {1,2, . . . ,c} or ft(v)∪ ft(v+ 1) =
{1,2, . . . ,c}. Hence, the coloring is optimal. ⊓⊔

2.1.2 Recoloring distance 0—optimality and the performance ofGREEDY

A lower bound of4
3 for multi-coloring on the path when there are no cancellations or re-

colorings was given in [2]. For the sequence used, 0-recoloring gives no extra possibilities,
and, hence, this lower bound carries over to 0-recoloring algorithms. For the upper bound,
the proof by Chrobak and Sgall [4], carries over to the general case (even though the algo-
rithm does not use recoloring). Their algorithm 4-BUCKET is 4

3-competitive and therefore
optimal, so this subproblem is completely settled.

Because of its simplicity, it is also interesting to consider the most natural greedy algo-
rithm for this problem: At a request for a new color, GREEDYADAPT colors using the small-
est color resulting in a legal coloring, just like GREEDY. At a cancellation, GREEDYADAPT

recolors the request with maximal color using the color available due to the cancellation.
Effectively, this can be thought of as always cancelling therequest with maximal color.

For the general case with no recoloring allowed, Chan et al. [2] showed that the compet-
itive ratio of the greedy algorithm is 2. The lower bound was proven by preventing reusage
of colors by forcing pairs of nodes to lose all colors they have in common [3]. When re-
coloring is allowed, this does not necessarily happen. However, we can still show that the
competitive ratio of GREEDYADAPT is exactly 2.

Theorem 2 For 0-recoloring, the competitive ratio ofGREEDYADAPT is 2.

Proof For the upper bound, assume the nodes on the path are numberedconsecutively and
that the maximal competitive ratio is reached when giving the (t +1)st request and that this
is to nodev. Due to greediness of GREEDYADAPT, the new maximal color cannot be larger
than | ft(v)|+1+ | ft(v−1)|+ | ft(v+1)|. OPT uses a color which is at least| ft(v)|+1+
max{| ft(v−1)|, | ft(v+1)|}. Thus, the ratio is bounded by

| ft(v)|+1+ | ft(v−1)|+ | ft(v+1)|
| ft(v)|+1+max{| ft(v−1)|, | ft(v+1)|}

≤ | ft(v)|+1+2max{| ft(v−1)|, | ft(v+1)|}
| ft(v)|+1+max{| ft(v−1)|, | ft(v+1)|} < 2

However, also note that the ratio could be arbitrarily closeto 2.
Now we turn to the lower bound. We number the nodes 1,2, . . . , ℓ and decide on an op-

timal number of colors exponential inℓ, defined byn = 2⌊
ℓ+2

4 ⌋. More precisely, we give a
sequence of requests and cancellations where OPT at no pointuses more thann colors. This
can be ensured by arranging that no two neighboring nodes ever have more thann uncan-
celled requests together. Since OPT knows the entire sequence in advance, and therefore
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Algorithm 2 The construction of the worst case sequence for GREEDYADAPT.
1: /* Initialization */
2: Request(2,n/2)
3: Request(1,n/2)
4: Cancel(2,n/2)
5: Request(3,n/2)
6: for i = 1 to 2log2 n−2 do
7: /* Phase i*/
8: s← n

2⌈i/2⌉+1 /* halves in every second iteration */
9: Request(i+1,s)

10: k← 3
11: while there are still requests remaining from the previous phasedo
12: Cancel(i +m,s), wherem∈ {0,2} is chosen such that the highest colors

remaining from the previous phase are found at nodei+m
13: Request(i+k,s)
14: k← k+2 mod 4

alson, it can maintain a coloring where every second node uses consecutive colors in in-
creasing order starting from one, and the other nodes use consecutive colors starting fromn
in decreasing order. At any cancellation, it can recolor to maintain this invariant.

The construction of the sequence is done in an initialization step followed by a number
of phases. We show that during the last phase, GREEDYADAPT uses 2n−2 colors, obtaining
a ratio of 2− 2

n = 2− 1
2⌊(ℓ−2)/4⌋ . Hence, for arbitrarily long paths, we get arbitrarily close to

a ratio of 2.
The construction of the sequence is described in Algorithm 2. We let Request(v,m)

denote a sequence ofm requests to each of the nodesv+ 4i, i = 0,1, . . . ,⌊ ℓ−v
4 ⌋. Simi-

larly, Cancel (v,m) denotes a sequence ofm cancellations at each of the nodesv+ 4i,
i = 0,1, . . . ,⌊ ℓ−v

4 ⌋.
The proof is self-contained, but it may help to refer to Figures 3 and 4 at the end of the

paper, where we illustrate Initialization and Phases 1–4 for ℓ= 15. Node numbers are shown
horizontally, and color numbers are shown vertically. We use white and black to indicate the
phases in which requests were made. Black is used for requests from an odd numbered
phase.

Note that, after Phasei, at leastℓ−1−2i nodes still have uncancelled requests (ℓ−2i
nodes, ifℓ is odd). Thus, after the last phase, there will be requests toat leastℓ− 1− 2 ·
(2log2 n−2) = ℓ+3−4· ⌊ ℓ+2

4 ⌋ ≥ 1 nodes.
During initialization, GREEDYADAPT usesn colors. In each of Phases 2i− 1 and 2i,

i≥ 1, it introduces n
2i+1 new colors compared to the previous phase. Hence, Phase 2i contains

n
2i more colors than Phase 2i− 2. It follows that, in the last phase, GREEDYADAPT uses
n+ n

2 +
n
4 + . . .+2= 2n−2 colors. ⊓⊔

2.1.3 Randomized algorithms

We note that ford-recoloring algorithms, ifd ≥ 1, then randomization cannot contribute
anything further, since we have an optimal algorithm. Ford = 0, Theorem 3 of the next
section gives us a randomized lower bound of4

3 , matching the deterministic upper bound
from this section.
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2.2 Multi-Coloring without Cancellations

The optimal algorithm from the previous section is also optimal for the more restricted case
without cancellations, except for 0-recoloring. For the case of 0-recoloring algorithms, we
observe that the lower bound of4

3 from [2] carries over, since the lower bound sequence
does not contain deletions. Hence, the 4-BUCKET algorithm from [2] is also optimal for the
case without cancellations.

Thus, the only remaining question is whether randomizationmight beat the determin-
istic lower bound of43 for 0-recoloring algorithms. As usual, the hope comes from the fact
that different deterministic strategies do not necessarily have the same worst-case sequences.
Thus, in addition to randomization possibly giving better results in practice, it may be pos-
sible to prove a better competitive ratio (against an oblivious adversary [1]). However, we
can establish that the search for such a randomized algorithm is in vain. To settle this, we
use Yao’s principle [14,1] and establish that no randomizedalgorithm can be better than the
best deterministic algorithm:

Theorem 3 For a path with at least eight nodes, no randomized online0-recoloring algo-
rithm can have a competitive ratio smaller than4

3 against an oblivious adversary.

Proof Let the eight nodes be labelledv1, v2, . . . ,v8. Let
{

σn
j

}

denote the set of all possible

request sequences of lengthn. We define a probability distributionyn( j) on this set. We
will allow multiple requests to be given in each step; with a more cumbersome formulation,
these could just as well be given one at a time. At Step 1,n

4 requests arrive at nodev3 and
n
4 requests arrive at nodev6. At Step 2, with probability1

2 , at each of the nodesv4 andv5, n
4

requests arrive (Case 1). With probability1
2 , at each of the nodesv1 andv8, n

4 requests arrive
(Case 2). All other request sequences are assigned zero probability.

In Case 1, an optimal algorithm would assign different colors to the requests from Step 1,
so that the colors used at nodesv3 and v6, respectively, can be reused for the upcoming
requests at nodesv5 andv4, respectively, resulting in 2· n

4 = n
2 used colors. In Case 2, no two

neighboring nodes receive requests. Thus, the optimal algorithm would assignv3 andv6,
as well as the subsequentn

4 requests to each ofv1 andv8 the same colors (from 1 through
n
4), so that the overall number of used colors would ben

4 . The expected cost of the optimal
algorithm would therefore be E[OPT] = 1

2 · n
2 +

1
2 · n

4 = 3
8n.

Let A denote the set of all deterministic algorithms for the problem. We derive a lower
bound on the performance of any algorithm in this set. After the coloring in Step 1, letx
denote the fraction of the colors atv6 that were not used atv3. Thus, up to this point, a total
of (1+x) n

4 colors have been used.
In Case 1, the(1− x) n

4 colors used at bothv3 and v6 cannot be used atv4 and v5.
Thus, 2(1−x) n

4 new colors have to be assigned, resulting in an overall result of (1+x) n
4 +

2(1−x) n
4 = (3−x) n

4 colors. In Case 2, at Step 2, the lowest total number of used colors is
(1+x) n

4 , achievable by using the same colors as in Step 1. Therefore the expected value of
any online algorithm ALG on the given probability distribution of yn( j) cannot be smaller
than 1

2(3−x) n
4 +

1
2(1+x) n

4 = n
2 .

A prerequisite for using Yao’s principle is that the cost forOPT goes towards infinity for
increasing length of the request sequences, and this is clearly fulfilled here. Then the lower
bound of any randomized online algorithm is at least as largeas the limit forn going towards
infinity of the quotient of the infimum of the expected value ofall deterministic algorithms
to the expected value of the optimal algorithm:
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liminf
n→∞

infALG∈A Eyn( j)

[

ALG
(

σn
j

)]

Eyn( j)

[

OPT
(

σn
j

)] ≥ liminf
n→∞

n
2

3
8n

=
4
3
.

Since all requests given to a node are given consecutively, having 0-recoloring available
gives no extra possibilities. ⊓⊔

3 Uniformly Random Request Sequences

Having completely settled all issues regarding competitive analysis of the problem, we ini-
tiate a more fine-grained analysis of the probabilistic issues by investigating uniformly ran-
dom request sequences in the model without cancellation.

3.1 The Smallest Non-Trivial Graph

The following result shows that on paths of four nodes where requests are given to nodes
uniformly at random, GREEDY is asymptotically expected 1-competitive (expected optimal).

If two requests for different nodes are given the same color,we refer to these as apair.
A request which has been given a color different from any color given to any other request is
referred to as asingleton. If we have a singletonr and a new requestr ′ (at a different node)
is given the same color as the singleton, thenr and r ′ become a pair andr is no longer a
singleton. Clearly, a new request either becomes a singleton or becomes part of a pair and
in the process eliminates a singleton.

On a four-node path, we denote the nodes byv1, v2, v3, andv4. We refer tov2 andv3 as
innernodes and the two others asouternodes.

We start with two simple observation:

Lemma 1 When usingGREEDY, there cannot be singletons on nodes that are a distance of
more than one apart.

Proof Assume to the contrary that this happened. Then consider thefirst singleton to be
coloredc at a node at a distance of more than one away from another node with singletons,
the latest of which was given colorc′. Clearly, because of greediness, we cannot have that
c> c′, soc< c′. However, then the colorc′ was not given in a greedy fashion, sincec must
have been available. We can conclude that singletons must reside on at most two consecutive
nodes. ⊓⊔

Lemma 2 On a four-node path, unless a configuration has singletons onboth inner nodes
and nowhere else,GREEDY has used the optimal number of colors.

Proof We consider all cases, as limited by Lemma 1. Assume that all singletons reside on an
outer node and on its neighbor, and assume without loss of generality that these two nodes
arev1 andv2. Since all pairs must have one of their two requests on one of these nodes, all
colors used onv3 andv4 are also used onv1 andv2. Thus, since the total number of requests
to v1 andv2 is a lower bound on the number of colors needed, GREEDY’s coloring is optimal.
This argument includes all situations where all singletonsreside on one node. ⊓⊔
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A sequence of independent stochastic variables{Xi}i≥1, where Prob[Xi = 1] =Prob[Xi =

−1] = 1
2 , is called asimple random walk[5]. It is well known that if we defineTn = ∑n

i=1 Xi ,

then limn→∞
E[|Tn|]√

n =
√

2
π [7]. We use this fact in the form of the following equivalent

statement:E[|Tn|] ≤
√

2
π
√

n+ εn, where we useεn as notation for some function such that

εn ∈ o(
√

n). Due to the absolute value, this is equivalent to considering one-sidedrandom
walks (also called a random walk with a barrier or with reflection), where one then does not
need the absolute value. A one-sided random walk is defined exactly as above, except that
whenTi = 0, then Prob[Xi+1 = 1] = 1. We only use the following:

Observation 1 E[Tn]≤
√

2
π
√

n+ εn.

Let Sj
i be the stochastic variables denoting the number of singletons on nodev j after the

ith request. DefineS0 = 0 and fori ≥ 1,

Si =















0, if ∑4
j=1 Sj

i = 0

∑4
j=1 Sj

i , if S1
i > 0 orS4

i > 0

|S2
i −S3

i |, otherwise

Lemma 3 The expected value of Sn is bounded from above by
√

2
π
√

n+ εn.

Proof For i ≥ 1, we define the stochastic variableXi = Si−Si−1. We will prove that{Xi} is
a one-sided simple random walk from which the result will follow.

We consider the cases in the definition ofSi−1:
If ∑4

j=1 Sj
i−1 = 0, clearly,Xi = 1 with probability one.

If S1
i−1 > 0 orS4

i−1 > 0, we assume without loss of generality thatS1
i−1 > 0. Then, accord-

ing to Lemma 1,S3
i−1 = S4

i−1 = 0. By a request tov1 or v2, Si (like Si−1) would be calculated
by the second case in the definition, and clearly,Xi = 1. A request tov3 would eliminate
a singleton onv1, andSi would be calculated by the first, second, or third case, depending
on S1

i−1 andS2
i−1. In each case,Xi = −1. By a request tov4, Si would be calculated by the

second case, ifS1
i−1 ≥ 2, by the first case, ifS1

i−1 = 1 andS2
i−1 = 0, and by the second or

third case otherwise. In each case,Xi =−1.
In the remaining case, we have thatS1

i−1 = S4
i−1 = 0 and thatS2

i−1 > 0 or S3
i−1 > 0.

Assume without loss of generality thatS2
i−1≥ S3

i−1. If S2
i−1 = S3

i−1, thenSi−1 = 0 andXi = 1
with probability one (Si , like Si−1, would be calculated by the third case). Otherwise, we
haveXi = 1, if v1 or v2 is requested, andXi =−1, if v3 or v4 is requested. (IfS3

i−1 > 0, then
Si is calculated by the third case in the definition. IfS3

i−1 = 0, thenSi is calculated by the
second case, ifv1 is requested, and by the third case otherwise.)

Thus,{Xi} is a one-sided simple random walk and the result follows fromObservation 1.
⊓⊔

Corollary 1 After m requests, given uniformly at random to nodes in a four-node path
graph, if exactly one inner node and no outer nodes has singletons, the expected number

of singletons is at most
√

2
π
√

m+ εm.

Proof This follows from Lemma 3 and the observation that, by definition of Si , in the case
of the corollary formulation,Si simply counts the number of singletons on the inner node.

⊓⊔
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We can now prove that under a uniform distribution of requests, meaning that requests
will be for each of the four nodes with probability14 each, GREEDY is asymptotically ex-
pected 1-competitive.

Theorem 4 For a path of four nodes,GREEDY is asymptotically expected optimal under a
uniform distribution of requests.

Proof By Lemma 2, GREEDY is optimal unless it enters a configuration with singletons on
both of and only on the inner nodes. If the configuration changes away from that, GREEDY

is optimal again. Thus, as a worst-case consideration, we analyze the asymptotic behavior
for this case, i.e., in the rest of this section, we assume that we are in a configuration with
singletons on both of the inner nodes and only on these nodes.

Let Xi be the stochastic variable such that

Xi =

{

1, if the ith request becomes a new singleton
−1, if the ith request eliminates a singleton

By the case assumption, if theith request is to one of the two inner nodes, it becomes
a new singleton, and otherwise, it forms a pair with an already existing singleton. Clearly,
Prob[Xi = 1] = Prob[Xi =−1] = 1

2 .
By Lemma 2, the only way to enter this state with singletons onboth and exclusively

on the inner nodes is by first having singletons exclusively on one of the inner nodes, and
after that get a request to the other inner node. LetY denote the number of singletons just
before this step, i.e., the number of singletons at the last time when all the singletons were
exclusively on one inner node. LetZ denote the number of pairs present at that time. Thus,
m=Y+2Z is the number of requests up to this point.

We consider the situation afterp requests in this state and letI refer to the entire input
sequence withn= m+ p requests. LetSp = ∑p

i=1 Xi .

GREEDY ends withY+Sp singletons and thus makesp−Sp
2 pairs, so it usesZ+Y+

p+Sp
2

colors. The sequence{Xi} is a one-sided simple random walk, so by Observation 1,E[Sp]≤
√

2
π
√

p+εp. By Corollary 1,E[Y]≤
√

2
π
√

m+εm. Additionally,Z+Y = m−Y
2 +Y = m+Y

2 .
By linearity of expectation,

E

[

m+Y
2

+
p+Sp

2

]

≤
m+

√

2
π
√

m+ εm

2
+

p+
√

2
π
√

p+ εp

2
.

Any algorithm, also OPT, must use at least max
{

Z+ Y+p
2 ,Z+Y

}

colors. These ex-

pressions coincide forY = p. We proceed by treating the two cases ofY < p and p≤ Y
separately.

First, consider the case whereY < p. ThenZ+ Y+p
2 is the maximum. Since,Z+ Y+p

2 =
m−Y

2 + Y+p
2 = m+p

2 , we get

E[GREEDY(I)]
E[OPT(I)]

≤
m+

√

2
π
√

m+εm

2 +
p+

√

2
π
√

p+εp

2
m+p

2

= 1+ ε ′m+ ε ′p,

whereε ′m = εm+
√

2
π
√

mandε ′p = εp+
√

2
π
√

p.
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Next, consider the case wherep ≤ Y. Then Z+Y is the maximum. SinceZ+Y =
m−Y

2 +Y = m+Y
2 , with the same definition ofε ′m andε ′p, we obtain that

E[GREEDY(I)]
E[OPT(I)]

≤
m+

√

2
π
√

m+εm

2 +
p+

√

2
π
√

p+εp

2
m+Y

2

≤
m+

√

2
π
√

m+εm

2 +
p+

√

2
π
√

p+εp

2
m+p

2
= 1+ εm+ εp.

Any constant upper bound on the terms dependent onmandp in ε ′m+ε ′p can be absorbed
in the additive constant in the definition of the competitiveratio. Form andp approaching
infinity, the additive term approaches zero, so the competitive ratio approaches one. ⊓⊔

To extend the proof above to general paths, an obvious strategy would be to transfer the
result for a four-node graph to a result for a four-node component on a longer path. Then
convert the expected result to a low probability of being faraway from the expected value.
The probabilities of these finitely many groups of four nodescan be summed up, and the
result converted back to an expected value for the larger graph. However, it is not obvious
how to establish the first partial result, since the proof strongly relies on properties coming
from knowing that there is no interference from other neighboring nodes ofv1 andv4. And,
in fact, we are not convinced such a result holds. We will return to a discussion of this in the
concluding remarks.

3.2 Experimental Results on Larger Graphs

We have proved that GREEDY approaches optimal performance for an increasing number of
requests on a path of length four. Empirical evidence suggests that GREEDY is approaching
a performance ratio of one compared to OPT for longer paths aswell.

We have run a simulation using a uniform distribution on paths with a varying number
of nodes, the result of which can be seen in Figure 1. Thex-axis displays the density, i.e., the
average number of requests per node. As measuring points, wehave used densities that are
ten times and fifteen times powers of two, i.e., of the form 10·2i and 15·2i , up to 10,000.
We found that the variance was quite high, so for each measuring point, we have taken the
average of 100 runs.

Variance is, not surprisingly, greatest for small densities. However, after some initial
fluctuation for small densities, all curves reach a maximum after which the value decreases
for increasing densities. Notice also that the curves for graphs with more nodes consistently
appear above curves with fewer nodes, but then seem to have smaller (more negative, that
is) slope. Thus, it appears plausible that these curves could all be approaching one.

4 Summary and Future Work

Regarding competitive analysis, we have settled all issuesfor multi-coloring on the path re-
gardless of whether or not cancellations may occur, whetheror not randomization is applied,
and to what extend recoloring is permitted. In addition, we have characterized the behavior
of the natural recoloring adaption of the greedy algorithm.
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Fig. 1 Simulation of GREEDY on paths of different lengths.

................................

Fig. 2 A “bad” configuration: 3/2 times as many colors as necessary are in use, and a request to any of the
inner nodes will increase the number of colors.

In extension of that, we have initiated the analysis of probabilistic issues. There are
many directions this work could take. We have started considering uniformly distributed
request sequences with some analytical and some experimental work. This could be contin-
ued, generalizing our results, considering other distributions, or proceeding in the direction
of hexagonal grids.

It is not a trivial matter to extend the results from the four-node case. In fact, it is possible
that the greedy algorithm is not expected optimal for longerpaths, depending on how this is
defined. We believe that configurations similar to the one in Figure 2, though occurring with
low probability, are the cause of the peaks seen in the experimental results for not too dense
request sequences. Notice also that for such configurations, the probability of progressing
towards a larger competitive ratio is temporarily more thana half, which means that we do
not see how to apply random walk techniques to obtain results. For high request density, we
are convinced that the small probability of entering this type of configuration is outweighed
by the higher probability of getting a large number of requests to two neighboring nodes,
which will force any algorithm, including OPT, to use a lot ofcolors, therefore giving near
optimal results for the online algorithm. We leave the full theoretical analysis of probabilistic
behavior on larger graphs as an interesting open problem.
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Fig. 3 Illustrating Initialization and Phase 1 forℓ= 15
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Fig. 4 Illustrating Phases 2, 3, and 4 forℓ= 15


