
Heuristic Variants of A∗ Search
for 3D Flight Planning

Anders N. Knudsen, Marco Chiarandini, and Kim S. Larsen?

Department of Mathematics and Computer Science, University of Southern Denmark
Campusvej 55, DK-5230 Odense M, Denmark
{andersnk,marco,kslarsen}@imada.sdu.dk

Abstract. A crucial component of a flight plan to be submitted for
approval to a control authority in the pre-flight phase is the prescription
of a sequence of airways and airway points in the sky that an aircraft has
to follow to cover a given route. The generation of such a path in the 3D
network that models the airways must respect a number of constraints.
They generally state that if a set of points or airways is visited then
another set of points or airways must be avoided or visited. Paths are
then selected on the basis of cost considerations. The cost of traversing
an airway depends, directly, on fuel consumption and on traversing time,
and, indirectly, on weight and on weather conditions.
Path finding algorithms based on A∗ search are commonly used in auto-
matic planning. However, the constraints and the dependency structure
of the costs invalidate the classic domination criterion in these algo-
rithms. A common approach to tackle the increased computational effort
is to decompose the problem heuristically into a sequence of horizontal
and vertical route optimizations. Using techniques recently designed for
the simplified 2D context, we address the 3D problem directly. We com-
pare the direct approach with the decomposition approach. We enhance
both approaches with ad hoc heuristics that exploit the expected ap-
peal of routes to speed-up the solution process. We show that, on data
resembling those arising in the context of European airspaces, the di-
rect approach is computationally practical and leads to results of better
quality than the decomposition approach.

1 Introduction

The Flight Planning Problem (FPP) aims at finding, for a given aircraft, a sky
trajectory and an initial fuel load, minimizing the total cost determined by fuel
consumption and travel time. The sky is subdivided into airspaces where airway
points and airways between them are predefined. Thus, a route, denoted by ori-
gin and destination airports, corresponds to a path in a network that models the
3D space. The path starts at the origin airport, climbs to a favorable altitude
and finally descends to the destination airport while satisfying different types

? Supported in part by the Independent Research Fund Denmark, Natural Sciences,
grant DFF-7014-00041.

of constraints. There are clear operational, financial, and environmental motiva-
tions for aiming at feasible and cost-optimal paths. However, the size of airway
networks, the nature of a large number of the constraints, and the dependencies
among different factors that affect costs make the problem substantially more
difficult to solve compared with classic shortest path problems in road networks.
In addition, some of the constraints from central control authorities (Eurocontrol
in Europe or FAA in USA) are issued to take rapidly changing traffic conditions
into account. Thus, they are updated frequently, and airlines, and to an even
larger extent small private airplanes, tend to determine the precise flight route
only a few hours before take-off, when more constraints are available. Although
the route can be adjusted during operation, doing so will lead to a suboptimal
route compared with a complete route determined offline. As take-off approaches,
available processing time will be on the order of a few seconds.

The cost of flying through an airway depends on the time when the traversal
occurs and the fuel consumed so far. There is a direct dependency between
the two, because airlines calculate the total cost as a weighted sum of total
travel time and total fuel consumption. There is also an indirect dependency,
because the time spent and amount of fuel consumed on an arc depend on the
performance of the aircraft, which is influenced by: (i) the weather conditions,
which in turn depend on the time when the arc is traversed, and (ii) the weight,
which in turn depends on the fuel consumed so far. A consequence of these
dependencies is that the cost of each arc of the airway network is not statically
given but becomes known only when the path to a node is determined. A further
complication is that while the departure time is fixed, the initial amount of fuel
is to be decided. This cost structure leads to issues similar to time dependencies
in shortest path on road networks [1].

The indirect cost dependencies together with the impossibility of waiting at
the nodes, even at the departure airport, mean that it might be a disadvantage
to arrive cheaply at a node (and hence earlier or lighter than other alterna-
tives) since it may preclude obtaining high savings on the remaining path, due
to favorable weather conditions developing somewhere at a later time. In other
words, the so-called First-In-First-Out (FIFO) property cannot be assumed to
hold. For labeling algorithms typically used to approach routing problems, Di-
jkstra [2] and A∗ [3], this means that a total ordering of the labels at the nodes
is not available, which has a tremendous impact on efficiency.

Further complexity is added by the quantity and type of constraints. The
most challenging ones are Route Availability Document (RAD) constraints. They
include local constraints affecting the availability of airways and airspaces at cer-
tain times, but most of them are conditional constraints. For example, if the route
comes from a given airway, then it must continue through another airway. Or
some airways can only be used if coming from, or arriving to, certain airspaces.
Or flights between some locations are not allowed to cross certain airspaces at
certain flight levels. Or short-haul and long-haul flights are segregated in con-
gested zones.

2

Due to increasing strain on the European airspace, the networks become
more heavily constrained to ensure safe flights. There are typically more than
16,000 constraints in the European network and they can be updated several
times a day. Some of the RAD constraints are generalizations of forbidden pairs,
which make the problem at least as hard as the path avoiding forbidden pairs
problem, shown to be NP-hard [4]. Additionally, RAD constraints invalidate the
FIFO assumption, with far-reaching effects in terms of complexity. Therefore,
a common approach in industry is to implement a first stage, where the algo-
rithms ignore some constraints that are difficult to formalize and check during
route construction, and enforce them later by somehow repairing the route. All
constraints are verified by the control authority when a route is submitted for
approval.

A common approach in industry is to solve the FPP in a decomposed form:
find a horizontal 2D route and then determine a vertical profile for it. While
this reduces the computation cost considerably, it does not guarantee optimal-
ity. However, due to the practical relevance, recent research has focused on these
two simplified problems. In [5], the authors address the horizontal 2D flight plan-
ning problem without constraints and study methods for calculating weather-
dependent estimates for the heuristic component of A∗ algorithms. They show
that with these estimates, A∗ achieves better experimental results in both prepro-
cessing and query time than contraction hierarchies [6], a technique from state-
of-the-art algorithms for shortest path on road networks. In [7], we proposed a
framework for handling the RAD constraints in the horizontal 2D problem. We
introduced a tree representation for constraints to maintain them during path
construction, and compared lazy techniques for efficiency. Experimental work
suggested that the best running times were obtained using an approach similar
to a logic-based Benders decomposition with no-good cuts, in which we ignore
constraints in the initial search and only add those that are violated in the
subsequent searches. In [8], we focused on the impact of the FIFO assumption
on the vertical route optimization problem, constrained to a given horizontal
route, but not considering constraints. We showed that wrt. cost considerations,
heuristically assuming the FIFO property in vertical routing is unlikely to lead
to suboptimal solutions.

We extend our work on constraint handling to the 3D context to show that an
A∗ approach can be practical in solving the FPP directly in a 3D network. With
respect to our 2D work [7], the networks we consider increase in size from 11,000
nodes and 1,000,000 arcs to 200,000 nodes and 124,000,000 arcs. We design
heuristics to improve the efficiency of the algorithms and empirically study the
quality loss that they imply. We focus on two types of heuristics: those affecting
the estimate of the remaining cost from a node to the goal in the A∗ framework
and those using the desired shape of the vertical profile to prune label expansion
in the A∗ algorithm. We present the comparison of the most relevant among
these heuristics and combinations. We include the comparison with the obvious
consequent outcome from our previous research, namely a two-phase approach
with constraints handled lazily by restart as in [7] and costs as in [8]. Our results

3

demonstrate that a direct 3D approach leads to better results in terms of quality,
with computation times that remain suitable for practical needs.

There are elements from real-life problems we ignore: First, we do not con-
sider the initial fuel as a decision variable. We assume this value is given on
the basis of historical data. In practice, we would approach the problem using
a line-search method as in [8]. Second, we do not consider (possibly non-linear)
overflight costs associated with some airspaces. We refer to [9] for a treatment
of these issues; authors suggest a cost projection method to anticipate the cost
incurred by the overflight and then eliminate potential paths. Finally, not all
airspaces have predefined airway points; free route airspaces lead to algorithms
exploiting geometric properties, and they have been shown to be more efficient
than graph-based ones [10] in those scenarios. These algorithms could in princi-
ple be integrated with the framework presented here, calling them as subroutines
when an entry point to a free route airspace is expanded.

This work is in collaboration with an industrial partner. Many of its cus-
tomers are owners of private planes who plan their flights shortly before depar-
ture and expect almost immediate answers to the portable device. Thus, a query
should be answered in a few seconds.

2 The Flight Planning Problem

The 3D airspace is represented by waypoints that can be traversed at different
altitudes (flight levels). Waypoints are connected by airways. This gives rise to
a network in the form of a directed graph D = (V,A). The nodes in V represent
waypoints at different latitude, longitude, and altitude. The arcs in A connect all
nodes that can be traced back to two different waypoints connected by an airway
and whose implied difference in altitude can be operated by the aircraft. Each
arc has associated resource consumption and costs. The resource consumption
for flying via an arc a ∈ A is defined by a pair τ a = (τxa , τ

t
a) ∈ R2

+, where the
superscripts x and t denote the fuel and time components, respectively. The cost
ca is a function of the resource consumption, i.e., ca = f(τ a).1 A 3D (flying)
route is an (s, g)-path in D, represented by n nodes, a departure node (source)
s, and an arrival node (goal) g, that is, P = (s, v1, . . . , vn, g), with s, vi, g ∈ V
for i = 1..n, vivi+1 ∈ A for i = 1..n− 1, and sv1, vng ∈ A. The cost of the route
P is defined as cP = csv1 +

∑
i=1..n−1 cvivi+1

+ cvng.
The route must satisfy a set C of constraints imposed on the path. These

constraints are of the following type: if a set of nodes or arcs A is visited, then
another set of nodes or arcs B must be avoided or visited. The visit or avoidance
of the sets A and B can be further specified by restrictions on the order of nodes
in the route, on the time window, and on the flight level range.

Definition 1 (Flight Planning Problem (FPP)). Given a network N =
(V,A, τ , c), a departure node s, an arrival node g, and a set of constraints C,

1 The total cost is calculated as a weighted sum of time and fuel consumed. In our
specific case, we have used 1.5$ per gallon of fuel and 1000$ per hour.

4

find an (s, g)-path P in D = (V,A) that satisfies all constraints in C and that
minimizes the total cost, cP .

All constraints can be categorized into two classes: forbidden and mandatory.
Constraints consist of an antecedent and a consequent expression, p and q. A
constraint of the mandatory type is satisfied when p→ q and violated otherwise;
one of the forbidden type is satisfied when p→ ¬q and violated otherwise. The
expressions p and q give Boolean values. They contain terms that express possible
path choices, such as passing through a node (representing a specific flight level at
an airway point), traversing an arc (possibly belonging to an airspace), departing
or arriving at a node, or visiting a set of nodes in a given order.

3 A∗ Search with Constraints

We use A∗ search as our base algorithm, and the following strategy, detailed and
shown effective in [7], to handle the numerous constraints: First, we find a path
using A∗, ignoring all constraints. Then, the path obtained is checked against all
constraints. If no constraint is violated, the path is feasible and the procedure
terminates. Otherwise, the violating constraints are added to the input and a new
search is initiated. The new path will not violate any of the included constraints
but it could violate others. Thus, the procedure is repeated until a feasible path
is found. In the iterations that follow the initial one, the search must handle
the constraints during the construction. A template for A∗ modified to handle
constraints is given in Algorithm 1.

In Alg. 1, the function FindPath takes the initial conditions as input: a
network N = (V,A, τ , c) built using information from the airspace, aircraft
performance data, and weather conditions; the query from s to g; the initial
fuel load τxs and the departure time τ ts ; an array h of values h(v) for every
node v ∈ V , indicating the precomputed, static, estimated cost of flying from
that node v to the destination node g; the set of constraints (see below). The
time and fuel consumptions for each arc τ depend on: (i) the flight level, (ii) the
weight, (iii) international standard atmosphere deviation (temperature), (iv) the
wind component, and (v) the cost index.2 Inputs (ii), (iii), and (iv) depend on
the time of arrival at the arc and hence on the partial path. We can regard these
values as retrieved from data tables but we refer to Sec. 5 for more details.

We represent partial paths under construction in Alg. 1 by labels. A label `
is associated with a node φ(`) = u ∈ V and contains information about a partial
path from the departure node s ∈ V to the node u, that is, P` = (s, ..., u).

Labels also have constraints associated. We represent constraints as trees,
where leaves are terms and internal nodes are logical operators (AND, OR,
NOT). Constraint trees are, potentially, associated with each label. Initially, all
constraint terms are in an unknown state and labels have no constraints associ-
ated. Then, if during the extension of a path of a label, a term of a constraint

2 The cost index is an efficiency ratio between the time-related cost and the fuel cost,
decided upon at a strategic level and unchangeable during the planning phase.

5

1 Function FindPath(N = (V,A, τ , c), s, g, (τxs , τ
t
s),h, Γ)

2 initialize the open list Q by inserting `s = ((s), 0, {})
3 initialize `r = ((),∞, {})
4 while Q is not empty do
5 ` ← retrieve and remove the cheapest label from Q
6 if (c` + h(φ(`)) > c`r) then break . termination criterion
7 if (φ(`) = g) and (c` < c`r) then
8 `r ← `
9 continue

10 foreach node v such that uv in A do
11 `′ ← label at v expanded from `
12 evaluate constraint trees in ∆`′

13 if one or more constraints in ∆`′ are violated then
14 continue

15 Insert(`′,Q)

16 return P`r and c`r

17 Function Insert(`′, Q)
18 foreach label ` ∈ Q with φ(`) = φ(`′) do
19 if (c` > c`′) then
20 if (∆` is implied by ∆`′) then . ` is dominated
21 remove ` from Q

22 else if (c′` > c`) then
23 if (∆` is implied by ∆`′) then return . `′ is dominated

24 insert `′ in Q
25 return

Algorithm 1: An A∗ search template for solving FPP.

is resolved, the corresponding constraint becomes active for that label. After
resolution, the term is removed from the constraint tree and the truth value is
propagated upwards. The evaluation of the constraint terminates when the root
node is resolved. The constraint is satisfied if the root node evaluates to false.

In practice, we translate the set of constraints C into a dictionary of constraint
trees Γ with constraint identifiers as keys and the corresponding trees as values.
For a constraint γ ∈ Γ , we let ι(γ) denote the constraint identifier and T (γ)
the corresponding tree. Then, for each node, v ∈ V , and each arc, uv ∈ A, we
maintain a set of identifiers of the constraints that have those nodes or arcs,
respectively, as leaves in the corresponding tree. We denote these sets Ev and
Euv, with Ev = {ι(γ) | γ ∈ Γ, v appears in γ} and Euv defined similarly.

We denote by ∆` the set of constraint trees copied from Γ to a label ` when
they became active for `. These constraint trees may be reduced immediately
after copying because some terms have been resolved. Let ρ(γ, P`) be the tree
T (γ) after propagation of the terms in P`. Then, we can formally define, ∆` =
{ρ(γ, P`) | ι(γ) ∈ Eu ∪ Euv, u, v ∈ P`},

6

In Alg. 1, each label ` is thus the information record made of (P`, c`, ∆`).
We maintain all labels that are created in a structure Q, called the open list. At
each iteration of the while loop in Lines 5–15 of FindPath, a label ` is selected
for extraction from the open list if its evaluation, given by c(`) + h(φ(`)), is the
smallest among the labels in Q. Successively, the label ` with φ(`) = u ∈ V is
expanded along each arc uv ∈ A, and new labels `′ = ((s, . . . , u, v), c` + cuv, ∆`′)
are created (Lines 10–12).3 The new set of constraint trees ∆`′ is obtained by
copying the trees from ∆`, and the trees from Γ identified by Ev and Euv. While
performing these operations, the trees are reduced based on the resolution of the
terms u and/or uv. If the root of a constraint tree in ∆`′ evaluates to true,
then the label `′ is deleted, because the corresponding path became infeasible
(Lines 13–14). On the other hand, if a root evaluates to false, then the corre-
sponding constraint tree is resolved but is kept in ∆`′ to prevent re-evaluating it
if, at a later stage, one of the terms that were logically deduced appears in the
path. Formally, ∆`′ = {ρ(γ, P`′) | γ ∈ ∆`}∪{ρ(γ, P`′) | ι(γ) ∈ Eφ(`′)∪Eφ(`)φ(`′)}.

If a new label `′ is not deleted, it is proposed for insertion in Q to the function
Insert. The function Insert takes care of checking the domination between the
proposed label `′ and the other labels in Q at the same node. The domination
criterion plays a crucial role in the efficiency of the overall algorithm.

The loop in the function FindPath terminates on Line 6 when the goal g
has been reached and the incumbent best path to g has total cost less than or
equal to the evaluation of all labels in Q. Under some well known conditions for
h that we describe in Sec. 4.1, the solution returned is optimal.

Label Domination: We motivate our specific choice for the definition of
the domination criterion using the following simple example taken from [7]. Let
C1 = ((a ∨ b) ∧ c) be the only constraint present. Let `1 = ((s, a, x), 3, {C1}),
`2 = ((s, d, x), 4,∅) and `3 = ((s, b, x), 2, {C1}) be the only three labels at x.
Consider the labels `3 and `2. Although `3 is cheaper than `2, `2 has not activated
C1 and hence its path ahead is less constrained than `3. Indeed, `2 can use the
cheapest route to g, while `3 must avoid c. It is therefore good not to discard
`2, in spite of being more expensive. The labels `1 and `3 are identical with
regards to constraints. However, the cost of `1 is greater than the cost of `3.
Both labels will continue selecting the path through the arc with cost 5, and
`3 will end up being the cheapest. The only way for `1 to recover and become
the cheapest would be if the time it arrives at x is so different from the time of
`3 that a drastic change in the weather conditions could be experienced. This
seems unlikely, and the results of [8] seem to suggest that it is safe to assume
the FIFO property for costs and not to assume it for constraints.

Further, it is possible to define a partial order relation between the constraint
sets associated with labels. Intuitively, if `a has activated the same constraints as
`b but `b has activated fewer terms than `a, then we can say that the constraints

3 Although D contains cycles and although, theoretically, the cycles could be profitable
because of the time dependency of costs, we do not allow labels to expand to already
visited vertices because routes with cycles would be impractical.

7

s

d

a

b

x c
g

3

2

1

1

1

1

1 1

5

φ(`)

g

h(φ(`))

dc(`)

dd(`)

Fig. 1. Left, a domination example. The labels are `1 = ((s, a, x), 3, {C1}), `2 =
((s, d, x), 4,∅) and `3 = ((s, b, x), 2, {C1}). Right, The setup for the SingleDescent esti-
mate.

of the label `b are implied by those of `a. We refer to [7] for a precise definition
of constraint implication and for implementation details.

Finally, we can state the domination criterion implemented in Lines 19–23.
A label `a is dominated by another label `b if φ(`a) = φ(`b), c`a > c`b and ∆`b

is implied by ∆`a . A label that is dominated is removed from (Line 21) or not
inserted into (Line 23) the open list. If φ(`a) = φ(`b), c`a > c`b but ∆`b is not
implied by ∆`a , then we say that `a is only partially dominated by `b. Partially
dominated labels cannot be removed from the open list.

4 Heuristics

We present novel heuristics designed to cope with the large sizes of networks
representing the 3D problem. We distinguish between two kinds of heuristics:
those that implement the estimation of the remaining cost from a node to the
goal, a crucial component of A∗ algorithms, and those that use the desired shape
of the vertical profile to add constraints and prune the search space.

Further, we describe a two-phase approach, inspired by the current practice
in industry, and we will use that as a benchmark for the heuristic 3D algorithms.

4.1 Remaining Cost Estimation in A∗

The estimated cost h is said to be admissible if, for any node u ∈ V , the value
h(u) does not overestimate the final cost from u to the goal. Further, it is said
to be consistent if for every node u ∈ V , h(u) is at most the cost of getting to a
successor v ∈ V plus h(v). Consistency can be shown to be the stronger property
as it also implies admissibility. If both properties hold, then Alg. 1 is optimal. If a
heuristic is admissible, but not consistent, an optimal solution can be guaranteed
if the algorithm allows for more than one label to be expanded from the same
node. In standard A∗ search algorithms, labels expanded from a node are moved
to a closed list, which is used to avoid expanding labels again from the same node.
Instead, our Alg. 1 allows more than one label to be expanded from a node in
order to handle the constraint-induced lack of FIFO property. The use of an
inconsistent rather than a consistent estimate increases the risk of re-expansions
occurring and thus lessens the efficiency of the algorithm.

8

However, guaranteeing consistency, by ensuring that for all arcs uv ∈ A,
h(u) ≤ h(v)+cuv, can be challenging in the FPP setting. First, it is not possible
to compute a time-dependent estimate for each node of the network considering
all its three coordinates. This would require a full 3D backwards search, which
would be computationally heavy, quickly invalidated by the change of data, and
pose memory problems. Second, restricting to considering only the 2D positions
of the waypoints, say, the projection π(u) onto the Earth for any node u ∈ V ,
one could define an estimate based on the great circle distance from π(u) to the
goal. But choosing the additional weather conditions would be more challenging:
for example, assuming tailwind at cruise level everywhere would not only yield
quite optimistic (i.e., loose) estimates but also would not guarantee consistency
due to the ignored, possibility of cheaper descent of some levels. Other attempts
at defining the flying conditions might lead to violation of admissibility as well.

In this light, with the goal of allowing precomputation of the estimate when
a query is received and before the A∗ algorithm is started, we explore two direc-
tions: making the heuristic consistent in spite of worsening its tightness wrt. true
cost, and giving up consistency while trying to improve the tightness. In both
cases, we strive to maintain estimate admissibility, without which Alg. 1 would
not find the optimal solution. Both estimate procedures contain the following
elements. They consider a 2D network obtained by the projection on the ground
of all points from V , they associate time and weight independent costs with
each arc, and they compute a cheapest path using a backwards Dijkstra from
the goal to each node of the 2D network. The estimate h(v) of each node v ∈ V
is then equal to the estimate of the projected node, i.e., h(v) = h(π(v)). The
two procedures differ in the way the resource independent cost is determined.

All Descents: We set the cost of an arc between any two projected nodes
to be equal to the cheapest possible cost of going between any pair of nodes
that project on those nodes. More formally, let x and y be two nodes in the 2D
network and let π−1(x) and π−1(y) be the set of nodes from V (D) that project
to x and y, respectively. We set the cost δxy between x and y in the 2D network
as follows: δxy = min{cuv | u ∈ π−1(x), v ∈ π−1(y), uv ∈ A}. Clearly, this is the
most conservative choice; it guarantees that the derived estimates are consistent
for all u, v ∈ V . Indeed, since h(x)− h(y) = δxy, for any pair of points u, v ∈ V
that project to x and y, respectively, the inequality h(u) − h(v) ≤ cuv will be
satisfied. We refer to this estimate as AllDescents. The algorithm described in
Sec. 3 with the AllDescents estimates is optimal, in the very likely case that the
FIFO assumption on costs holds.

Single Descent: While AllDescents is consistent and admissible, its esti-
mates are unrealistically cheaper than the real costs. Indeed, the cheapest arc
between any two connected waypoints is very likely a descent from the top-most
allowed flight level to the lowest flight level the aircraft can reach. The estimate
associated with a node at a given altitude then becomes the cost of the aircraft
descending between every two nodes in the shortest path to the destination.

We design an estimate that is closer to the real cost by considering only
cruises between nodes. More specifically, between any pair of nodes x and y in

9

the projected network, we consider the cost δxy = min{cuv | u ∈ π−1(x), v ∈
π−1(y), uv ∈ A, uv is a cruise}. It is realistic in most scenarios as the cruising
phase is by far the most important and longest phase of a flight and thus the
estimated value will often be consistent. However, there are scenarios where it
is optimal for the aircraft to descend early on the route, which could lead to
inconsistent estimates. Unfortunately, the estimates could also be inadmissible
as the aircraft will have to descend at some point to reach the destination airport.
To decrease the chance of this occurring, we correct the estimate by including a
single direct descent to the goal when calculating the shortest path to the goal.
We achieve this by updating the estimate when it is needed. Thus, whenever
a label ` at φ(`) needs to be evaluated, we subtract from its estimate h(φ(`))
the difference between the cost of a descent to the ground and a cruise of the
same length using the great circle distance of the potential descent. We retrieve
the cost of descending to the ground using the weather and weight conditions
of `. We denote this cost dc(`) and the distance required for the descent by
dd(`). From the tables, we then retrieve the cost of cruising for dd(`) under
the same weather and weight conditions of `. We denote this cost δdd(`). See
Fig. 1, right. Thus, formally, the updated estimate h′ for ` at φ(`) becomes
h′(`) = h(π(φ(`))− (δdd(`) − dc(`)). We refer to this estimate as SingleDescent.

4.2 Pruning Heuristics

Descent Disregard: Every aircraft has a flight level at which, under average
weather conditions, it is optimal for it to cruise. In industry, this flight level
is often enforced. We use the information on this desired flight level (DFL)
heuristically to avoid expanding unpromising labels at low flight levels, thus
reducing the search space of the A∗ search algorithm. We achieve this as follows.

Normally A∗ tries any possible climb, descent, and cruise along an arc when
expanding a label, but many labels created (especially descents and cruises at
low and inefficient flight levels) will not lead to optimal solutions. We aim for
the algorithm to reduce the number of irrelevant descent and cruise expansions.
Using the aircraft performance data we can determine the greatest descent dis-
tance (GDD), which is the greatest distance required to be able to reach the
ground level from any flight level under any weight and weather conditions. If
the distance to the destination airport is greater than the GDD, we do not need
to worry about being able to reach the ground in time and can focus on remain-
ing at an efficient flight level. We could therefore disallow descent and cruise
expansions for labels not yet at the DFL and outside of the GDD. We still need
to worry about constraints that could be blocking the DFL, so we must allow
some deviation. We therefore define a threshold for flight levels where, if the
aircraft is below this threshold and the distance to the destination is greater
than the GDD, descents and cruises are not allowed. The value of the threshold
determines a trade-off between missed optimality and speed-up. We have chosen
to set the threshold to 3/4 of the DFL, as experiments indicated that this value
yields a large decrease in run-time and only a small decrease in solution quality.
We refer to this heuristic as DD.

10

Climb Disregard: Flight routes generally consist of three phases: climb,
cruise, and descent. It is desirable for passengers’ comfort to have only one
of each of these phases. Our algorithm does not take this into account as it
allows for unlimited climbs and descents in order to avoid constraints or to
find better weather conditions. Limiting the number of times the aircraft can
alternate between climbing and descending will result in more comfortable routes
and speed up the algorithm. On the other hand, as the routes will be more
constrained, it will lead to an increase in the total cost of the path.

We implement the rule that allows switching only once from climbing to de-
scending, so once a descent has been initiated, no further climbs are allowed. We
still allow paths to have a staircase shape, having climbs and descents interleaved
with cruising arcs. This could be advantageous when further climbing becomes
appealing only after some weight has been lost by consuming fuel.

To monitor the switches we equip the labels with a binary information indi-
cating whether or not a descent has been performed. The label `a of a path that
has already made a descent will be more constrained than the label `b of a path
that has not. Thus, `a should not be allowed to dominate `b, even if `b is more
expensive. The decreased effect of domination implies an increase in run-time
that may outweigh the reduction of labels expanded due to the restriction. In
order to assess the effect of this lack of domination experimentally, we include
two configurations in our tests: one where we ignore the switch constraint in
domination (thus, `a would have dominated `b), and one in which we treat the
switch constraint as any other constraint (thus, `a would be only partially dom-
inating `b and hence `b is not discarded). We refer to the former version as CD
and to the latter as CDS.

4.3 Two-Phase Approach

In this approach to the FPP, we first find a path through airway points, solving
a horizontal 2D routing problem, and then decide the vertical profile of the route
by solving a vertical path finding problem.

Solving the horizontal 2D problem, considering only a given altitude at every
airway point, does not work well with the second phase, because for many of
the routes found, it is then impossible to find a feasible vertical profile. Instead,
we “simulate” a horizontal 2D path finding problem by only considering one
arc between two airway points when expanding a label, namely the feasible arc
whose arrival node is closest to the DFL for the aircraft. Thus, for example,
the label at the departure node only expands through arcs going from 0 to 200
nominal altitude; at the next node a label only expands on arcs going from 200 to
400 nominal altitude; and, from there, if 400 is the DFL, the label only expands
through arcs to nodes at the same flight level. We only consider descents if it is
the only option. Thus, we consider any node, whose projection is the destination
airport, as goal nodes.

Climbing and descending decisions are handled in the vertical routing, where
we restrict ourselves to the path through the airway points found in the previous

11

phase but reintroduce freedom to determine the altitude. During the search, all
possible climbs and descents from each node are allowed.

In both phases, we make use of the same constraint framework as in the 3D
solution, iterating the search until a feasible path is found. However, limiting
the search in the first phase to only one arc per pairs of waypoints can lead to
a route that cannot be made feasible in the second phase, because, for example,
of missing links for the descent phase. Hence, when the second phase fails to
find a feasible vertical profile, we analyze which combination of arcs caused the
problem, introduce a forbidden constraint containing those arcs, and restart the
first phase. This can lead to many restarts and even unsolvable instances, as the
constraints we introduce may be more severe than they are in reality.

We also include versions of the two-phase approach that use the DD and
the CD heuristics. These heuristics address the vertical profile and hence only
apply in the vertical optimization phase. We do not vary the estimate heuristics
because the conditions here are different from the 3D case: in the first phase,
we use an estimate heuristic similar to SingleDescent but without update. In
the second phase we do not use any estimate and hence the search corresponds
to a Dijkstra search. We were not able to come up with an A∗ estimate that
could be helpful because, with the main focus in this phase being on altitude,
estimates tend to be loose and pose computational problems due to the need of
calculating these values on the 3D network (or recalculating them every time a
new horizontal route is found).

5 Experimental Results

We have conducted experiments on real-life data to compare combinations of
the elements presented here. All algorithms used the template of Alg. 1. In the
instantiated versions, the algorithms use the AllDescents or the SingleDescent
estimate heuristics combined with reasonable pruning heuristics: DD, CD, CDS,
DD + CD, DD + CDS. We also include the versions where AllDescents and Sin-
gleDescent are not combined with any pruning heuristic. Finally, we compare
with the two-phase approach, which is closest to methods used in practice.

The real-life data is provided by our industrial partner. This data consists of
aircraft performance data, weather forecast data in standardized GRIB2 format,
and a navigation database containing the information for the graph. The graph
consists of approximately 200,000 nodes and 124,000,000 arcs. The aircraft per-
formance data refers to one single aircraft. The data for the weather forecast is
given at intervals of three hours on specific grid points that may differ from the
airspace waypoints. When necessary, we interpolate both in space and time.

In the calculation of the AllDescents and SingleDescent estimates, we assume
piece-wise linearity of the consumptions τ on the arcs. Consequently, the cheap-
est cost of an arc can be determined by looking only at the points where mea-
surements are available (e.g., at time intervals of three hours). Under this as-
sumption, the AllDescents estimate is admissible. Note however that, as shown
in [5], the travel time function between data points is not piece-wise linear and

12

so neither is our cost function that includes fuel consumption. To get as close
as possible to having an optimal algorithm as baseline for the comparison, we
therefore included an algorithm without pruning heuristics and with the AllDe-
scents estimate derived from costs on arcs given by a piece-wise linear function,
whose pieces in the time scale are reduced to five minutes intervals. This ap-
proach would not be feasible in practice, as it took more than 40 hours in our
computational environment (see below) to precompute the estimates.

A test instance is specified by a departure airport and time, and a destination
airport. A set of 13 major airports in Europe was selected uniformly at random
to explore a uniform coverage of the constraints in the network. Among the 156
possible pairings, 16 were discarded because of short distances, resulting in 140
pairs that were used as queries. The great circle distances of these instances
range from 317 to 1682 nautical miles. All algorithms were implemented in C#
and the tests were conducted on a Dell XPS 15 laptop with an Intel Core i7
6700HQ at 2.6 GHz with 16GB of RAM. Each algorithm was run 3 times on
each instance and only the fastest run was recorded. All runs had a time limit
of one hour.

We visualize the results in Fig. 2. The plots are disposed such that column-
wise we distinguish the estimate heuristic and row-wise the performance measure
considered. The pruning heuristics are represented along the x-axis of each plot.
The quality of a route is its monetary cost. We show the percentage gap with
respect to the results found by the baseline algorithm (5 minute pieces). The run-
time is the time spent for preprocessing (i.e., calculating the estimates) plus the
total time spent searching. The preprocessing times for any configuration (apart
from the baseline algorithm, which is not shown) are almost identical, so we do
not distinguish. Time is measured in seconds and a logarithmic transformation is
applied. We did not observe a clear dependency of the time on the mile distance
of the instances, hence this latter is not visualized. Points represent the results
of the selected runs. Points of results attained on the same instance are linked
by a gray line. The boxes show the first, second (median) and third quartile of
the distribution.

Comparison: The first observation is that the gap of AllDescents without
pruning heuristic is different from zero only in a couple of instances and only in
one making the gap worse than 1.5%. Hence, in practice assuming piece-wise lin-
earity of consumptions seldom deteriorates the results. However, this observation
might be dependent on our setting, as Blanco et al. [5] do show a relevant impact.
Comparing AllDescents with SingleDescent, we observe that the inadmissibility
of SingleDescent does not worsen the solution quality in any instance while wrt.
run-time, SingleDescent leads to a considerable save for most instances. Tighter
estimates allow for more restrictive search; a narrower area around the optimal
route. We give evidence of this in Fig. 3, where we show the search results for one
instance using the two estimate heuristics. The figure depicts the horizontal sec-
tion of the 3D network restricted to the arcs that were actually expanded during
the search. SingleDescent is much better at narrowing the search compared with
AllDescents. However, the figure does not show the vertical dimension and the

13

Fig. 2. Solutions quality (top) and run-time (bottom) results on 140 queries.

several flight levels expanded from nodes nor the arcs that were expanded more
than once in SingleDescent. There are 14 instances where the extra expansions
to cope with the inconsistency outweigh the expansions saved from the tighter
estimate and make SingleDescent slower than AllDescents.

Considering pruning heuristics, DD leads to worse solution quality in only 5
instances for both estimate heuristics while improving the run-time for both. As
expected, solutions become more costly when including heuristics that restrict
the vertical profiles, CD and CDS. However, because these routes are more stable,
they are more comfortable, a quality component not included in the monetary
cost otherwise considered. If we include correct domination, as done in CDS,
the solution quality improves slightly over algorithm versions that use CD, but
considering the run-time, CDS is computationally more demanding than CD. In
general, profile-based heuristics have considerable impact on the run-time. The
CD and DD+CD heuristics contribute most to the speed-up. In a few instances,
however, they can perform worse than the variants with no pruning heuristic.
In these cases, finding a different solution (which might violate a constraint)
can cause the algorithm using CD to do extra passes. Finally, the configuration
using both DD and CD is the fastest. It has a median run-time slightly above
14 seconds and a worst-case performance of 14 minutes.

Comparison with the Two-Phase Approach: The two-phase approach
with no pruning heuristics has a median quality gap of 1.9%, which is signifi-
cantly higher than any of the 3D algorithms. There are also a few heavy outliers
with 5 instances having a gap over 10%. In these instances, the two-phase ap-
proach returns a path through arcs where flying at the desired flight level is

14

Fig. 3. Comparison of arcs expanded by AllDescents (left) and SingleDescent (right)
with no heuristics on a route from Innsbruck to Nantes.

forbidden by some constraints and thus the vertical optimization will not be
able to repair and obtain a good quality solution. There are also two instances
where the two-phase approach fails to find any solution at all. As far as run-time
is concerned, the two-phase approach does entail faster run-times than any of
the 3D algorithms with a median of 10 seconds and a worst-case performance
of 47 minutes. In general, there are some outliers caused by instances where the
vertical optimization has trouble finding a feasible solution causing a large num-
ber of restarts. Using the DD heuristic does not yield any relevant effect, while
using the CD heuristic does decrease run-time but also worsens the cost of the
final path further. CD also increases the number of unsolved instances to 10.

6 Concluding Remarks

We found the SingleDescent estimate together with the DD heuristic partic-
ularly interesting. With respect to the near optimal solution of the baseline
algorithm, this algorithm leads to deterioration of solution quality in only a
few instances while it provides a considerable decrease in run-time. If further
speed-up is needed, the CD heuristic could be added at the cost of only a slight
increase in deterioration. The routes attained adopting the CD heuristic might
be preferable in practice anyway due to the more stable vertical profile.

Perhaps our most important contribution is that we demonstrate the prac-
ticability of a direct 3D flight planning approach. Our comparison against the
two-phase approach, more commonly used in practice, shows that although me-
dian results for the latter are better in terms of run-time, the solution quality and
the outliers in run-time and unsolved instances are considerably worse than the
results attainable with direct 3D approaches. The 3D approach exhibits fewer
outliers, terminates on every instance, and is therefore more robust. If run-time
is really an issue, we have shown that by combining the SingleDescent, the DD,
and the CD heuristics, competitive time performance can be achieved, while re-
taining superior robustness and smaller reduction in solution quality relative to
the two-phase approach. The ideas tested here will be included in future releases
of software from our industrial partner.

15

References

1. G. Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Minimum
time-dependent travel times with contraction hierarchies. ACM Journal of Exper-
imental Algorithmics, 18(1):Article No. 1.4, 2013.

2. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

3. Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

4. Hananya Yinnone. On paths avoiding forbidden pairs of vertices in a graph. Dis-
crete Applied Mathematics, 74(1):85–92, 1997.

5. Marco Blanco, Ralf Borndörfer, Nam-Dung Hoang, Anton Kaier, Adam Schienle,
Thomas Schlechte, and Swen Schlobach. Solving time dependent shortest path
problems on airway networks using super-optimal wind. In 16th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS), volume 54 of OpenAccess Series in Informatics (OASIcs), pages 12:1–
12:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

6. Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route
planning in transportation networks. ArXiv, 2015. arXiv:1504.05140 [cs.DS].

7. Anders N. Knudsen, Marco Chiarandini, and Kim S. Larsen. Constraint handling
in flight planning. In 23rd International Conference on Principles and Practice of
Constraint Programming (CP), pages 354–369. Springer, 2017.

8. Anders N. Knudsen, Marco Chiarandini, and Kim S. Larsen. Vertical optimization
of resource dependent flight paths. In 22nd European Conference on Artificial Intel-
ligence (ECAI), volume 285 of Frontiers in Artificial Intelligence and Applications,
pages 639–645. IOS Press, 2016.

9. Marco Blanco, Ralf Borndörfer, Nam Dung Hoàng, Anton Kaier, Pedro M. Casas,
Thomas Schlechte, and Swen Schlobach. Cost projection methods for the shortest
path problem with crossing costs. In Gianlorenzo D’Angelo and Twan Dollevoet,
editors, 17th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS), volume 59 of OpenAccess Series in Infor-
matics (OASIcs), pages 15:1–15:14. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, 2017.

10. Casper Kehlet Jensen, Marco Chiarandini, and Kim S. Larsen. Flight planning in
free route airspaces. In Gianlorenzo D’Angelo and Twan Dollevoet, editors, 17th
Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS), volume 59 of OpenAccess Series in Informatics (OASIcs),
pages 14:1–14:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

16

