The Relative Worst Order Ratio
Applied to Paging

Joan Boyar

g Department of Mathematics and Computer Science

University of Southern Denmark, Odense

Joint work with
Lene M. Favrholdt
Kim S. Larsen

University of Southern Denmark

OLA 2004 — p.1/44

Paging Problem

m Cache: & pages
m Slow memory: N > k pages

m Reguest sequence: seqguence of page
numbers

m Fault: page requested not in cache
m Cost: 1 per fault to bring page into cache
m Goal: minimize cost

Refinements of
competitive analysis

Max/Max Ratio
[Ben-David, Borodin 94]
Compares A to OPT
on worst seguences of length n.

Random Order Ratio
[Kenyon 95]
Compares A to OPT
on random ordering of same sequence.

Relative Worst Order
Ratlo

Aw (I): A’s performance on worst permutation of 7 wrt. A

Intuitively: WR, 5 = worst-case ﬁ;‘jéfg on long I

o Ay(N)= By, (N)

OLA 2004 — p.4/44

Relative Worst Order
Ratlo

[Boyar,Favrholdt 03]
Formally:

a(A,B) = sup{c|3b: VI: Aw(l) > cBw(l) — b}
cu(A,B) = inf{c|3b: VI: Aw([) < cBw(l)+ b} .

If q(A,B) > 1o0rc,(A,B) <1, the algorithms are
comparable. Then the relative worst-order ratio
WR, i Is defined.

Otherwise, WR, 5 IS undefined.

Relative Worst Order

(A, B) = sup{c|db: VI: Aw(l) > cBw(I) — b}
cu(A,B) = inf{c|3b: VI: Aw(l) < cBw(l)+ b} .

If (A, B) > 1, then WRy 5 = cy(A,B), and
if cuy(A,B) <1, then WRyp = (A, B).

Relative Worst Order
Ratlo

(A, B) > 1orc (A B) <1:
One algorithm is at least as good as the other.

WR 4 5 bounds how much better.

Values of WR p:

minimization | maximization

A better than B <1 > 1

B better than A > 1 <1

Algorithms:
LRU vs. FWF

LRU — Least Recently Used
FWF — Flush When Full
Both have competitive ratio £.

Example sequence, £ = 5:

(1,2,3,4,5,6,5,4,3,2,1,2,3,4,5,6,5,4, 3,2)

Total cost LRU = 8
Total cost FWF = 20

I\ ru — Worst ordering of I for LRU
VI FWFy (1) > FWF(I ry) > LRUy, (1)
Thus, ¢(FWF,LRU) > 1 holds.

FWF vs. LRU

FWFyy (I") = 2kn

Worst ordering for LRU:

2,k k+1,1)" (2, ...

LRUw (I") = n(k + 1)+ k — 1

2k
k+1
2k
k+1

Theorem. WRewg LrU >
Theorem. WRFWF,LRU —

"={1,2,.. kk+16Fk,..

Look-Ahead

Model: A sees request + next [requests:
Look-ahead(/)

On-line — Look-ahead(l) — OPT

Fact 3: & Is still best possible competitive ratio,
even with look-ahead /.

Other Models of
Look-Ahead

Resource-bounded look-ahead [Young 91]

Strong look-ahead [Albers 93]

Natural look-head [Breslauer 98]

Look-ahead

LRU(/):
m Sees current page and next [pages.

m Avoids evicting pages it sees.
m Evicts |.r.u. among others in cache.

First show ¢(LRU, LRU(/)) > 1 holds:
Theorem. For any sequence 1,
LRUy (1) > LRU(Z)w (1).

LRU vs. LRU (/)

Sequence [. Partition into phases:
LRU(/) faults k£ + 1 times per phase.
Suppose < £ distinct pages in phase P.

(..

1y o9 Py ooy @y oeey Py oeey Psy Ps+15 >
phase P; k+1 faults for LRU(?)

Page p evicted when ¢ requested.
Least recently used not among next /.

LRU vs. LRU (/)

Case p not among next /-
(coD1y ey Dy eeey @y eeey Dy ooy Dy Pty -2)
P'CP
P’ has ¢ and > k£ — 1 distinct pages.
Phase P has > k£ + 1 distinct pages.

LRU vs. LRU (/)

Case p not among next /-
<°°°p17 ey Pyeees @y eeey Pyoosy PDsy Ps+1 >
P'CP
P’ has ¢ and > k£ — 1 distinct pages.
Phase P has > k + 1 distinct pages.

Case p among next /-

<'°'p17 ooy Py ey @ 5 eeey Py oeey Psy Ps+1 >
P'cP

>k —1distinctin P”: >k+1in P.

LRU vs. LRU (/)

Process I by phases.
Example sequence, £ =5 and ¢ = 2:

(1,2,3,4,5,6, || 5,7,1,8,4,2,5,9,3)

Reorder phase with new pages first;
others in order from last phase.

(1,2,3,4,5,6, || 7,8,9,1,2,3,4,5,5)
LRU faults on > as many as LRU(/).

LRU vs. LRU (/)

Consider /" = (1,2, ...k, k+ 1)".
I™ has only k£ + 1 pages.
LRU faults on every page.

Suppose [< k£ — 1.
Whenever LRU (/) faults (after first k faults),
It doesn’t fault on next [requests.

Suppose [> k.
LRU(/) faults on < 1 page out of &.

Theorem. WRLRU,LRU(E) > mm{l + 1, k}

Retrospective-LRU

Mimic the optimal algorithm, LFD.
Phases with marking:
Basic Ideas

B Remove marks at start of new phase.

m Mark a requested page if in LFD’s cache.

m Avoid evicting marked pages if possible.

m Within the marked/unmarked groups, evict using LRU.

m Start new phase if 2nd fault on same page.

OLA 2004 — p.19/44

RLRU: request 7 to page p

if p IS NOt In cache then

else

if there is no unmarked page then
evict the least recently used page in cache
else
evict the least recently used unmarked page
if second fault on p in current phase then
unmark all pages and start a new phase with r
if p was in LFD’s cache just before this request then
mark p

if p Is different from the previous page then
mark p

OLA 2004 — p.20/44

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9,10)

Total cost =0

Cache Initially empty.

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9,10)

Total cost =1

Cache filling up.

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9,10)

Total cost = 2

Cache filling up.

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9,10)

Total cost =3

Cache filling up.

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9,10)

Total cost =4

Cache filling up.

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9,10)

Total cost =5

Cache filling up.

Example sequence, £ = 5:

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Total cost = 6

Least recently used evicted.

RLRU — Execution

Example sequence, £ = 5:

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Total cost = 7

Least recently used evicted.
Page marked.

RLRU — Execution

Example sequence, £ = 5:

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Total cost = 8

Least recently used unmarked evicted.
Page marked.

RLRU — Execution

Example sequence, £ = 5:

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Total cost =9

Least recently used unmarked evicted.
Page marked.

RLRU — Execution

Example sequence, £ = 5:

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Total cost = 10

Least recently used unmarked evicted.
Page marked.

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9,10)

Total cost = 11

Least recently used unmarked evicted.

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Total cost = 12

Least recently used unmarked evicted.

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Total cost = 12

No fault!

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Total cost = 12

No fault!

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Total cost = 12

No fault!

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Total cost = 12

No fault!

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Total cost = 13

Least recently used unmarked evicted.

RLRU — Execution

Example sequence, k£ = 5.

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9,10)

10 1 || 2| 3| 4

Total cost = 14

Least recently used unmarked evicted.

RLRU — Execution

Example sequence, £ = 5:

(1,2,3,4,5,6,1,2,3,4,7,8,1,2,3,4,9, 10)

Asymptotically, RLRU faults on 2 pages per
group (regardless of ordering).

LRU faults on & + 1 pages per group.

So LRU can be a factor “*! worse than RLRU.

Experimental Results

Tested on a collection of traces from various applications:
m key word searches in text files
m selections and joins in Postgres

B external sorting
m various kernel operations

Trace lengths vary from 18,533 to 95,723 requests.
Cache sizes powers of two from 8 through 2048.
For higher powers, all pages can fit in cache

(for most sequences).

OLA 2004 — p.41/44

Experimental Results

k sort i1 j2 i3 j4 5 j6 | join | pg7 xds

12619 | 470 | 8177 | 4243 | 7201 | 25332 | 4596 | 7718 | 9277 | 10762
16 || 10736 | 468 | 8134 | 4255 | 7221 | 25326 | 4525 | 7003 | 9259 | 10709
1492 | 043 | 053 | -0.28 | -0.28 002 | 154 | 9.26 | 0.19 0.49
10587 | 136 | 8120 | 4230 | 7135 | 25276 | 4505 | 6879 | 9185 | 10754
64 || 10402 | 137 | 8057 | 4239 | 7140 | 25278 | 4506 | 6838 | 9103 | 10695
1.75 | -0.74 | 0.78 | -0.21 | -0.07 -0.01 | -0.02 | 0.60 | 0.89 0.55
10238 | 126 | 8118 | 4213 | 7039 | 25209 | 4499 | 6793 | 8989 | 10564
256 || 10166 | 126 | 8057 | 4221 | 7038 | 24913 | 4492 | 6780 | 8984 | 10534
070 | 000 | 0.75| -0.19 | 0.01 117 | 016 | 0.19| 0.06 0.28
9618 | 126 | 5060 | 1921 | 6709 | 24024 | 4476 | 6042 | 8674 | 10190
1024 || 9532 | 126 | 4157 | 1799 | 6674 | 23693 | 4470 | 6040 | 8607 | 10183
0.89 | 0.00 | 17.85 | 6.35 | 0.52 1.38 | 013 | 0.03| 0.77 0.07

OLA 2004 — p.42/44

Experimental Results

I | HWH% HHH ;I
—2% 0% 18%
I i h*MH i I
—2% 0% 2%

Other Results with
Relative Worst Order
Ratlo

. Bin Packing: Worst-Fit better than Next-Fit.

2. Dual Bin Packing:
First-Fit better than Worst-Fit.

3. Scheduling — minimizing makespan:
Post-Greedy better than putting all jobs on fast
machine, for two related machines.

4. Bin Coloring:
Greedy better than keeping only one open bin.

5. Proportional Price Seat Reservation:
First-Fit better than Worst-Fit.

OLA 2004 — p.44/44

	Paging Problem
	Refinements of \ competitive analysis
	Relative Worst Order Ratio
	Relative Worst Order Ratio
	Relative Worst Order Ratio
	Relative Worst Order Ratio
	Algorithms: \ LRU vs. FWF
	FWF vs. LRU
	FWF vs. LRU
	Look-Ahead
	Other Models of Look-Ahead
	Look-ahead
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	Retrospective-LRU
	DD {RLRU: request r to page p}
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	Experimental Results
	Experimental Results
	Experimental Results
	Other Results with Relative Worst Order Ratio

