
DM509: Programming LanguagesAn Introdution to Prolog
Torben Nielsentkn�imada.sdu.dkRolf Fagerbergrolf�imada.sdu.dkDepartment of Mathematis and Computer SieneUniversity of Southern Denmark, Odense

Contents
1 Introdution 11.1 About Prolog . 11.2 GNU Prolog . 12 Basi Prolog Syntax 32.1 Constants . 32.2 Variables . 42.3 Strutures . 42.4 Clauses . 42.5 Operators . 52.5.1 Comparing Terms . 52.6 Comments . 63 Basi Prolog Conepts 73.1 Uni�ation . 73.2 Goals, Satisfation and Baktraking . 84 Learning by Doing 114.1 A Simple Sript . 114.2 Prediates as Funtions . 134.3 Performing Arithmeti Operations . 144.4 Writing Output . 155 Baktraking and...Cut! 165.1 Baktraking Revisited . 165.2 Making the Cut . 165.3 Common Uses of Cuts . 18ii

iii5.3.1 Con�rming the Choie of a Rule . 195.3.2 The �Cut-Fail� Combination . 195.3.3 Terminating �Generate and Test� Code . 20

Chapter 1Introdution1.1. About PrologEssentially Prolog is a system that performs automated dedution (within a restrited areaof logi) made into a programming language. Languages in this vein are alled delarativeprogramming languages, and programming in suh a language is alled delarative or logi1programming.Prolog is a high level language that is espeially suited for speialized appliations withinspei� areas, suh as expert systems, language parsing and proessing, symboli omputation,AI, and exhaustive searhes.Prolog (and other delarative programming languages) is di�erent to �onventional� pro-gramming languages (suh asC and Java) in several ways. While imperative programs usuallyonsist of a sequene of statements, a Prolog sript onsists a list of fats (often referred toas the �database�) and dedutive rules (olletively referred to as lauses).An exeution of a Prolog sript is an systemati attempt (performed by the Prolog system)to logially dedue a statement (a goal) given by the programmer using the fats and rules ofthe sript.In addition to these striking di�erenes, Prolog is basially untyped (atually, a very simpleform of dynami typing is used).1.2. GNU PrologThe Prolog system installed on IMADA's system is GNU Prolog2.GNU Prolog is an interpreter, although ompilation of a Prolog sript to a standaloneprogram is possible.GNU Prolog an be invoked from a terminal with the ommand gprolog. One gprologis running, a sript an be (re)loaded by issuing the ommand ['sript.pl'℄.3.1This, despite the fat that many programmers used to imperative or objet oriented programming tendto �nd delarative programming anything but logial!2See http://pauilla.inria.fr/~diaz/gnu-prolog/ for the o�ial manual and further information.3Prolog sripts onventionally have the extension .pl. 1

2 INTRODUCTIONNote that invoking gprolog with a sript �le as an argument (e.g. gprolog sript.pl) will(rather annoyingly) not load the sript. If you are using the tsh shell, this an be remediedby inserting the following line into your .tshr �le.alias gp 'gprolog --query-goal "["'\\\'\!*\\\''"℄"'This allows you to start gprolog and load a sript by invoking the ommand gp sript.pl.

Chapter 2Basi Prolog SyntaxThis hapter overs the basi syntax of Prolog from the bottom up. Examples of ompleteProlog sripts are given in Chapter 4.The basi syntax of Prolog onsists of terms. Terms an be either onstants, variables orstrutures. These are ombined into lauses and fats whih make up a Prolog program.2.1. ConstantsConstants are either alphanumeri strings starting with a lowerase letter (undersores areallowed)1 or a number (in GNU Prolog2 these are divided into integers and �oating pointnumbers or �oats � both written with onventional syntax).Constants (even if they are written as numbers) have no meaning exept as identi�ers. Beauseof this, we will onsider onstants written as numbers as having number syntax, rather thanbeing numbers. A onstant with number syntax may, if requested by the programmer, beinterpreted as an atual number for ertain purposes.The stok data types of strings and haraters may be represented as onstants in Prolog(with haraters being onstants of length one). Constants without number syntax are alledatoms and onstants in general are alled atomi.Some examples of allowed onstants in GNU Prolog are shown in Figure 2.1.1.Strings george, a, you_may_use_undersore, '4youEye$only'Integers 234, -42Floats 34.67, -3.8, 34.2e-4Figure 2.1.1: Examples of valid onstants in GNU Prolog.1If surrounded by single quotes, any symbols are allowed in the string.2See setion 1.2 for more about GNU Prolog. 3

4 BASIC PROLOG SYNTAX2.2. VariablesVariables are alphanumeri strings starting with an upperase letter (undersores are allowed).Variables an be bound to other terms through uni�ation3 during exeution. Initially in anexeution, they are unbound.The following strings are examples of allowed variables in: X, Result, NumberOfReports,My_tax.2.3. StruturesStrutures onsist of an atom (referred to as the struture's funtor) and zero or more subterms(referred to as the struture's arguments or omponents) in parentheses.Strutures have no intrinsi meaning beyond strutural. The may be used both as Booleanfuntions (alled prediates) and as data strutures (alled reords).The number of subterms in a struture is alled the arity of the struture. Nullary strutures(strutures that have arity 0) use no parentheses, i.e. they are just atoms.The following are examples of valid strutures in GNU Prolog.peterowns(peter,volvo_S60)owns(peter,X)owns(X,volvo_S60)2.4. ClausesClauses de�ne Boolean funtions (alled prediates) by speifying what makes the funtiontrue. Clauses are written as follows.S :- S1, S2, S3, S4, ..., Sn. (note the trailing period!),where n ≥ 0, and S and all the Si's are either strutures or variables that are instantiated tostrutures at runtime.For i ≥ 1, a lause is alled a rule. The left hand side is alled the head of the lause, andright hand side is alled the body.If i = 0, a lause may be written simply S.and is then alled a fat.The ommas used in a rule, denote the logial onjuntion of the strutures on the right hand.Thus, in our example above, S is true if all the Si's are true.A single prediate may have several lauses. The prediate is then onsidered true if at leastone of the lauses for it is true, i.e. the Boolean value of a prediate is the logial disjuntionof all its lauses.The following are examples of valid lauses in GNU Prolog:3The proess by whih Prolog seeks to ful�ll a goal. See setion 3.1.

Operators 5alie.owns(peter,volvo_S60).owns(alie,X).owns(peter,X) :- ar(X),smart(X).Here, alie is a nullary prediate and owns is a binary prediate. This is expressed bythe notation alie/0 and owns/2. Note that predname/2 and predname/3 are di�erentprediates!2.5. OperatorsOperators in Prolog are binary strutures where the funtor is written using in�x notation.Unary operators with pre�x notation (but no parentheses) exist too.Noteworthy built-in operators are the standard arithmeti operators (+, -, *, et.) and thelist onstrutor . (a period).The identi�er [℄ is a speial onstant used to denote the empty list. Syntati sugar/notationalonveniene is available for working with lists, e.g. .(3,.(4,[℄)) is the same as 3.(4.[℄)whih an be written as [3,4℄, and expressions suh as .(Head,Tail) may be written as[Head|Tail℄.In addition it is possible to use the onventional in�x notation of arithmeti operators, e.g.*(6,+(8,9)) an be written as 6*(8+9). Note that the last struture is di�erent from theonstant 102!2.5.1. Comparing TermsThe usual omparison operators (<,>,=, et.) are also available in Prolog, albeit with aslightly di�erent syntax. The following table shows all the built-in omparison operators andtheir meaning. X == Y X is equal to YX \== Y X is not equal to YX �< Y X is less than YX �=< Y X is less than or equal to YX �> Y X is greater than YX �>= Y X is greater than or equal to YNote that although the omparison operator == may (for some uses) seem interhangeablewith the uni�ation operator =, the atual meaning is vastly di�erent!Terms in gprolog are ompletely ordered (i.e. any two terms may be ompared!) in thefollowing manner (least to greatest):- Variables (oldest �rst).- Floating point numbers in numeri order.- Integers in numeri order.

6 BASIC PROLOG SYNTAX- Atoms in alphabetial (i.e. harater ode) order.- Compound terms ordered �rst by arity, then by the name of the prinipal funtor andby the arguments in left-to-right order.2.6. CommentsComments in Prolog are written between /* and */ for omments spanning multiple linesor after % for single line omments.

Chapter 3Basi Prolog Conepts3.1. Uni�ationUni�ation is the proess by whih the Prolog system tests (by means of pattern mathing)if two strutures an possibly be equal. If parts of the strutures ompared are variables,suessful uni�ation instantiates (assigns a value to) the variables in question.This is perhaps easier to understand by onsidering the uni�ation of two strutures:[1,peter,X,f(Y,20)℄ and [Z,peter,alie,f(2,20)℄.These will unify suessfully, sine the variable Z an be equal to the onstant 1; the onstantpeter is of ourse equal to itself; the variable X an be equal to the onstant alie; and thestruture f(Y,20) an be equal to the struture f(2,20), sine the variable Y an be equalto the onstant 2.As a result of this uni�ation, the following instantiations will our: X = alie, Y = 2 andZ = 1, in aordane with the above reasoning.It is important to note that assignments inProlog are made by instantiation throughsuessful uni�ation.An unsuessful uni�ation attempt, for instane between the strutures f(X,X) and f(1,2),does not instantiate any variables.It is possible to unify two variables, either diretly or as a result of uni�ation between moreomplex strutures. These will then o-refer, meaning that they must have the same value atall times. Thus, if one of the variables is instantiated, the other will be as well.A �nal noteworthy example is uni�ation of lists formed from the . or | operators. Considerfor instane the lists [Head|Tail℄ (shorthand for .(Head,Tail)). These will unify suess-fully with Head = 1 and Tail = [2,3,4℄. Thus, the struture [Head|Tail℄ allows us tosplit a list into its head and tail. 7

8 BASIC PROLOG CONCEPTS3.2. Goals, Satisfation and BaktrakingGoals are Boolean questions asked by the user (e.g. through the prompt in gprolog). Morepreisely, goals are Boolean statements of the same form as the right hand side of a rule,whih the user would like to know if an be derived as true, using the fats and rules of agiven Prolog sript.The Prolog system will try to satisfy a goal by attempting to unify the goal with the lausesof the sript. The lauses are tested for uni�ation with the goal one by one, starting withthe topmost lause.If the goal is suessfully uni�ed with a fat then the goal is satis�ed. If the goal uni�es with arule, the goal an be satis�ed if the body of the rule an be. The goal is therefore substitutedby the body of the rule. The terms of body are now subgoals, whih the system will try tosatisfy one by one from left to right in the same manner as the original goal.In general, the urrent goal will be the logial onjuntion of several subgoals. The Prologsystem attempts uni�ation between the left-most of these and the head of a lause in thesript. If uni�ation is possible, the body of this lause is substituted for the subgoal � inpartiular, if the lause in question is a fat, the list of subgoals is shortened, sine the bodyof a fat is empty.If the list of subgoals vanishes, the original goal has been satis�ed, i.e. a derivation of it hasbeen found � it has been proven true from the fats and rules given by the sript.If a subgoal annot be satis�ed baktraking will take plae. Baktraking is the proessby whih the Prolog system undoes previous uni�ations, thereby unsatisfying previouslysatis�ed subgoals, suh that they be attempted satis�ed in a di�erent way. Instantiations thatourred as a result of uni�ations that are undone during baktraking are also undone, i.e.variables there were instantiated as a result of these uni�ations beome uninstantiated duringbaktraking. Naturally, variables an be reinstantiated during the further searh proess.The searh proedure performed by the Prolog system is equivalent to a depth �rst searhin a tree de�ned by the lauses of the sript and the instantiations of variables during thesearh.As an example of this proess, onsider the following sript.1 a(X,Y,Z) :- b(X,Y),d(Z).23 b(X,X) :- (X).4 b(1,2).56 (3).7 (4).89 d(5).10 d(6).Assume that we ask the Prolog system to resolve the goal a(X,Y,Z) using the above sript.The system will then perform the searh shown in �gure 3.2.1In the �gure, nodes represent the urrent goal and edges represent suessful uni�ations ofthe �rst subgoal of the urrent goal with the head of a lause. On eah edge, the equations

Goals, Satisfation and Baktraking 9of the solved form orresponding to the uni�ation are listed.Note that in eah lause of the ode, the variables are loal variables, hene new uniquevariable names are introdued at eah uni�ation with the head of a lause of the ode.1
X = X1

Y = Y 1

Z = Z1

X1 = X2

Y 1 = X2

X2 = 3

Z1 = 5 Z1 = 6

X2 = 4

Z1 = 5 Z1 = 6

X1 = 1

Y 1 = 2

Z1 = 5 Z1 = 6

a(X,Y,Z)b(X1,Y1),d(Z1)(X2),d(Z1)d(Z1) d(Z1) d(Z1)
= suessFigure 3.2.1: The searh tree produed by the Prolog system whentrying to resolve the goal a(X,Y,Z) using the above sript. Thenodes represent the urrent goal and the edges represent suessfuluni�ations, the results of whih are listed on the orrespondingedge.When the searh reahes a suessful leaf, the alulated answer is the solved form of theset of equations on the path from the leaf to the root. However, only the equations for thevariables ouring in the original goal are reported. Hene, the six possible reported answersare:

X : 3 3 4 4 1 1
Y : 3 3 4 4 2 2
Z: 5 6 5 6 5 6Note, GNU Prolog stops at �rst solution found and display the instatianted variables (ifany). The user may request another solution by entering ; at the prompt. In addition, allsolutions may be requested by entering a. Further answers are produed by baktraking andontinuing the searh.1The need for loal variables is lear if we onsider an initial goal of e.g. a((X,Y),Z,Q), where the variablesX and Y in the goal and in the head of the �rst lause learly are independent.

10 BASIC PROLOG CONCEPTSBaktraking is disussed in detail in Chapter 5. For now tho, we will proeed to study somesmall Prolog sripts that make use of what we have seen so far.

Chapter 4Learning by DoingThis hapter ontains several examples of Prolog sripts. Some of the examples illustrateuseful programming tehniques. It is reommended that you read the sripts and the providedoutput, and try to follow the derivation proedure.4.1. A Simple Sript1 /* A simple sript about (heterosexual) ouples: */23 male(peter).4 male(paul).5 female(beatrie).6 female(alie).7 female(lepatra).89 diffSex(X,Y) :- male(X),female(Y).1011 possibleCouple(X,Y) :- diffSex(X,Y), likes(X,Y), likes(Y,X).1213 likes(peter,alie).14 likes(alie,peter).15 likes(paul,alie).16 likes(paul,beatrie).17 likes(paul,lepatra).The following is a transript of a gprolog session using the above sript. See if you an followthe derivation proedure performed by gprolog for eah query.
11

12 LEARNING BY DOING
1 Q:23 | ?- female(alie).45 A:67 yes89 Q:1011 | ?- female(Y).1213 A:1415 Y = beatrie ? ;1617 Y = alie ? ;1819 Y = lepatra2021 yes2223 Q:2425 | ?- likes(paul,X).2627 A:2829 X = alie ? ;3031 X = beatrie ? ;3233 X = lepatra3435 yes3637 Q:3839 | ?- likes(leopatra,X).4041 A:

4243 no4445 Q:4647 | ?- diffSex(X,Y).4849 A:5051 X = peter52 Y = beatrie ? ;5354 X = peter55 Y = alie ? ;5657 X = peter58 Y = lepatra ? ;5960 X = paul61 Y = beatrie ? ;6263 X = paul64 Y = alie ? ;6566 X = paul67 Y = lepatra6869 yes707172 Q:7374 | ?- possibleCouple(X,Y).7576 A:7778 X = peter79 Y = alie ? ;8081 no

Prediates as Funtions 134.2. Prediates as Funtions1 /* The prediate myAppend(L1, L2, L3) is true if and only if2 the onatenation of L1 and L2 is equal to L3 */34 myAppend([℄,L,L).5 myAppend([X|L1℄,L2,[X|L3℄) :- myAppend(L1,L2,L3).The following is a transript of a gprolog session using the above sript.1 Q:23 | ?- myAppend([1,2℄,[3℄,[1,2,3℄).45 A:67 yes89 Q:1011 | ?- myAppend([1,2℄,[3℄,[1,2,4℄).1213 A:1415 no1617 Q:1819 | ?- myAppend([1,2℄,[3℄,L3).2021 A:2223 L3 = [1,2,3℄.2425 Q:2627 | ?- myAppend(L1,[3℄,[1,2,3℄).2829 A: L1 = [1,2℄3031 Q:3233 | ?- myAppend(L1,L2,[1,2,3℄).3435 A:3637 L1 = [℄38 L2 = [1,2,3℄

3940 L1 = [1℄41 L2 = [2,3℄4243 L1 = [1,2℄44 L2 = [3℄4546 L1 = [1,2,3℄47 L2 = [℄4849 Q:5051 | ?- myAppend(L1,L2,L3).5253 A:5455 L1 = [℄56 L3 = L2 ? ;5758 L1 = [A℄59 L3 = [A|L2℄ ? ;6061 L1 = [A,B℄62 L3 = [A,B|L2℄ ? ;6364 L1 = [A,B,C℄65 L3 = [A,B,C|L2℄ ? ;6667 L1 = [A,B,C,D℄68 L3 = [A,B,C,D|L2℄ ? ;6970 L1 = [A,B,C,D,E℄71 L3 = [A,B,C,D,E|L2℄ ? ;7273 L1 = [A,B,C,D,E,F℄74 L3 = [A,B,C,D,E,F|L2℄ ?7576 et....

14 LEARNING BY DOINGAs seen in the above transript, prediates an be used as funtions (with results reatedthrough uni�ation). The return value of this sort of funtion is one of the arguments. Formany prediates, the situation is as seen in the transript; all arguments may potentially serveas the return value.4.3. Performing Arithmeti OperationsAs the followingGNU Prolog sript shows, it is possible to interpret onstants with numbersyntax as atual numbers and use these in arithmeti operations.1 /* An example finding N fatorial (the prediate fatorial(N,F) is true if2 (N is instantiated and) F is N fatorial). */34 fatorial(0,1).56 fatorial(N,F) :-7 N>0,8 N1 is N-1,9 fatorial(N1,F1),10 F is N * F1.Here, > is a built-in prediate written as an in�x operator. The arguments of < must be(variables instantiated to) strutures whih an be interpreted as arithmeti expressions (e.g.2*3+4). In the ase of variables, these must be instantiated at the time satisfation is at-tempted. Note that N-1 is a struture, not a number.The built-in prediate is evaluates suh a struture (any struture whih an be interpretedas an arithmeti expression) and uni�es the result with the left argument.The following is a transript of a gprolog session using the above sript.1 Q:23 | ?- fatorial(4,24).45 A:67 true89 Q:1011 | ?- fatorial(4,25).1213 A:1415 no1617 Q:

1819 | ?- fatorial(3,F).2021 A:2223 F = 62425 Q:2627 | ?- fatorial(N,6).2829 A:3031 An error message, beause32 variables taking part in '>'33 and 'is' are not instantiated.

Writing Output 154.4. Writing Output1 /* Programming example: Towers of Hanoi */23 hanoi(N) :- move(N,left,entre,right).45 /* Arguments: Number of diss, soure dis, destination dis, spare dis */67 move(0,_,_,_).8 move(N,A,B,C) :-9 N >= 1,10 M is N-1,11 move(M,A,C,B),12 inform(A,B),13 move(M,C,B,A).1415 inform(X,Y) :- write(X),write('->'),write(Y),nl.Here, write/1 is a built-in prediate whih sueeds one, and as a side e�et prints a repre-sentation of its argument on sreen. The prediate nl/0 similarly prints a newline.The following shows a test run of the above sript using gprolog.1 | ?- hanoi(3).2 left->entre3 left->right4 entre->right5 left->entre6 right->left7 right->entre8 left->entre

Chapter 5Baktraking and...Cut!5.1. Baktraking RevisitedWe now brie�y return to the baktraking proess. Consider the following Prolog sript.1 a :- ,b.2 a :- .34 b :- e.5 b :- e,,f.6 b :- .78 .9 .1011 e :- fail.12 e.1314 f.15 f.16 f.For the sake of larity, no variables our in this example, hene no instantiations will our(uni�ation, however, still ours).We will now onsider the searh tree generated by Prolog when asked to resolve the goal a.This tree is shown in Figure 5.1.1 Note that the prediate fail/0 will not unify with anything(it always fails), whih shows that leaves in the tree do not neessarily indiate suesses. Tryto follow the satisfation proess.5.2. Making the CutWhile the ability of the Prolog system to baktrak may be extremely useful, there are stillsituations where we wish to avoid (or ontrol) this. For this, Prolog provides the built in16

Making the Cut 17a,bbe e,,f,ff f
 be e,,f,ff f

= suess= shorthand for the node failFigure 5.1.1: The searh tree onsidered by Prolog when asked toresolve the goal a using the above sript.prediate !/0, alled the ut prediate. The ut prediate always sueeds, but has the sidee�et of ommitting all hoies made to the left of it in a rule. That is, how prediates on theright hand side of the rule that ome before the ut were satis�ed and whih rule was hosenfor the prediate on the left hand side. Consider for example the rule b :- e,,!,f. Theut will ommit the hoie of rule for , e and b.Thus, the e�et of a ut on the baktraking proess is that if a ut is attempted resatis�ed,the searh proess ontinues at the node two levels above the highest node ontaining this utprediate in its goal list. From this node, the next non-visited hild is searhed. Said anotherway, when a ut is unsatis�ed, all hoies that the ut has ommitted are also unsatis�ed.To illustrate this onsider the above Prolog sript with an added ut.1 a :- ,b.2 a :- .34 b :- e.5 b :- e,,!,f.6 b :- .78 .9 .1011 e :- fail.12 e.13

18 BACKTRACKING AND...CUT!14 f.15 f.16 f.The searh tree for the goal a will then be as shown in Figure 5.2.1. Bold arrows denote jumpsaused by the added ut, and subtrees no longer visited are shown on a gray bakground.a,bbe e,,!,f,!,f!,ff !,ff
 be e,,!,f,!,f!,ff !,ff

= sues= shorthand for the node failFigure 5.2.1: The searh tree onsidered by Prolog when askedto resolve the goal a using the above sript (with the added ut).Bold arrows denote jumps aused by the added ut, and subtreesno longer visited are shown on a gray bakground.5.3. Common Uses of Cuts1There are three ommon uses of uts:- Con�rming the hoie of a rule,- Foring failure (using the so-alled �ut-fail� ombination), and- Terminating �generate and test� ode.We will examine these uses in the following setions.1This setion adapted from [CM94℄.

Common Uses of Cuts 195.3.1. Con�rming the Choie of a RuleImagine that we want to write a Prolog prediate sum_to(N,R) that instantiates R to thesum of 1, . . . , N. Initially, we may attempt the following de�nition of sum_to.1 sum_toWrong(N,1) :- N=<1.2 sum_toWrong(N,R) :-3 N1 is N-1,4 sum_toWrong(N1,R1),5 R is R1 + N.But as the following output shows us, this de�nition of the prediate does not provide theorret answer (or rather, it provides wrong answers as well!).1 | ?- sum_toWrong(2,R).23 R = 3 ? ;45 R = 4 ? ;67 R = 4 ? ;
89 R = 3 ? ;1011 R = 1 ? ;1213 R = -2 ? ;14

15 R = -6 ? ;1617 R = -11 ?1819 et.The reason for this is that, when asked for more solutions Prolog initiates baktraking.This auses the system to unsatisfy the last satis�ed goal and attempt to resatisfy it in adi�erent way. It is easy to see that the last satis�ed goal must been satis�ed by the base ase(sum_toWrong(N,1)).However, one the base ase has been applied to satisfy a goal, we do not wish for this goalto be satis�ed in a di�erent way. We an ahieve this by inserting a ut as shown in thefollowing de�nition of sum_to.1 sum_toGood(N,1) :- N=<1,!.2 sum_toGood(N,R) :-3 N1 is N-1,4 sum_toGood(N1,R1),5 R is R1 + N.As shown in the following test run, this de�nition produes only one (orret) result.1 | ?- sum_toGood(2,R).23 R = 345 yes5.3.2. The �Cut-Fail� CombinationThere may be situations in whih we wish to fore the Prolog system to fail when attemptingsatisfation of a goal. For example, we may know that if a ertain ondition is true, a goalshould not be satis�able.

20 BACKTRACKING AND...CUT!Consider, for instane, the following Prolog sript designed to identify average tax payers.1 inome(peter,400000).2 foreigner(peter).34 average_taxpayerWrong(X) :- foreigner(X), fail.5 average_taxpayerWrong(X) :- inome(X,I), I < 500000.Here the built in prediate fail/0 is used to fore a failure. It is lear that the goalaverage_taxpayerWrong(peter) should fail, sine Peter is a foreigner. However, as thefollowing output shows, this is not the ase.1 | ?- average_taxpayerWrong(peter).23 yesThis is beause the fail/0 prediate initiates baktraking, whih auses the Prolog systemto attempt satisfation of the goal using another rule. And sine the goal is satis�able byanother rule (the next one), the system reports that it has satis�ed the goal.Again, this an be remedied by inserting a ut as follows.1 average_taxpayer(X) :- foreigner(X), !, fail.2 average_taxpayer(X) :- inome(X,I), I < 500000.The output shown below shows that this new de�nition gives the orret answer.1 | ?- average_taxpayer(peter).23 noIn this ase, it would be more natural to use the built in �not satis�able� operator \+. The\+ operator is de�ned suh that \+X is satis�able if only if X is not satis�able. This allow forthe following de�nition of the average_taxpayer prediate, i.e. an average tax payer is nota foreigner and has an inome less than 500000.1 average_taxpayer(X) :- \+foreigner(X), inome(X,I), I < 500000.5.3.3. Terminating �Generate and Test� CodeA typial type of programing in Prolog is so-alled �generate and test� ode. This type ofode involves generating a solution and testing if it is orret. Consider, for example, thefollowing sript to perform integer division.Here, we use the is_integer/1 prediate to generate a result and the div_test/3 prediateto test if it is orret.1 /* Divide N1 by N2 */2 divide(N1, N2, Result) :-

Common Uses of Cuts 213 is_integer(Result),4 div_test(N1, N2, Result),5 !.67 /* Generate all integers */8 is_integer(1).9 is_integer(X) :- is_integer(Y), X is Y+1.1011 /* Test for N1/N2 = D */12 div_test(N1,N2,D) :-13 P1 is N2*D,14 P2 is N2*(D+1),15 P1 =< N1,16 P2 > N1.We have plaed a ut at the end of the divide prediate, beause we know that there is onlyone possible hoie of Result that will satisfy the prediate, and therefore do not wish toonsider further values of Result. In fat, were we to �allow� baktraking by removing theut, the sript would simply run forever if we did not aept the initial (only) result.

Referenes[CM94℄ Cloksin and Mellish: Programming in Prolog, 5
th ed., Springer, 2003.

22

