
DM509: Programming LanguagesAn Introdu
tion to Prolog
Torben Nielsentkn�imada.sdu.dkRolf Fagerbergrolf�imada.sdu.dkDepartment of Mathemati
s and Computer S
ien
eUniversity of Southern Denmark, Odense

Contents
1 Introdu
tion 11.1 About Prolog . 11.2 GNU Prolog . 12 Basi
 Prolog Syntax 32.1 Constants . 32.2 Variables . 42.3 Stru
tures . 42.4 Clauses . 42.5 Operators . 52.5.1 Comparing Terms . 52.6 Comments . 63 Basi
 Prolog Con
epts 73.1 Uni�
ation . 73.2 Goals, Satisfa
tion and Ba
ktra
king . 84 Learning by Doing 114.1 A Simple S
ript . 114.2 Predi
ates as Fun
tions . 134.3 Performing Arithmeti
 Operations . 144.4 Writing Output . 155 Ba
ktra
king and...Cut! 165.1 Ba
ktra
king Revisited . 165.2 Making the Cut . 165.3 Common Uses of Cuts . 18ii

iii5.3.1 Con�rming the Choi
e of a Rule . 195.3.2 The �Cut-Fail� Combination . 195.3.3 Terminating �Generate and Test� Code . 20

Chapter 1Introdu
tion1.1. About PrologEssentially Prolog is a system that performs automated dedu
tion (within a restri
ted areaof logi
) made into a programming language. Languages in this vein are
alled de
larativeprogramming languages, and programming in su
h a language is
alled de
larative or logi
1programming.Prolog is a high level language that is espe
ially suited for spe
ialized appli
ations withinspe
i�
 areas, su
h as expert systems, language parsing and pro
essing, symboli

omputation,AI, and exhaustive sear
hes.Prolog (and other de
larative programming languages) is di�erent to �
onventional� pro-gramming languages (su
h asC and Java) in several ways. While imperative programs usually
onsist of a sequen
e of statements, a Prolog s
ript
onsists a list of fa
ts (often referred toas the �database�) and dedu
tive rules (
olle
tively referred to as
lauses).An exe
ution of a Prolog s
ript is an systemati
 attempt (performed by the Prolog system)to logi
ally dedu
e a statement (a goal) given by the programmer using the fa
ts and rules ofthe s
ript.In addition to these striking di�eren
es, Prolog is basi
ally untyped (a
tually, a very simpleform of dynami
 typing is used).1.2. GNU PrologThe Prolog system installed on IMADA's system is GNU Prolog2.GNU Prolog is an interpreter, although
ompilation of a Prolog s
ript to a standaloneprogram is possible.GNU Prolog
an be invoked from a terminal with the
ommand gprolog. On
e gprologis running, a s
ript
an be (re)loaded by issuing the
ommand ['s
ript.pl'℄.3.1This, despite the fa
t that many programmers used to imperative or obje
t oriented programming tendto �nd de
larative programming anything but logi
al!2See http://pauilla
.inria.fr/~diaz/gnu-prolog/ for the o�
ial manual and further information.3Prolog s
ripts
onventionally have the extension .pl. 1

2 INTRODUCTIONNote that invoking gprolog with a s
ript �le as an argument (e.g. gprolog s
ript.pl) will(rather annoyingly) not load the s
ript. If you are using the t
sh shell, this
an be remediedby inserting the following line into your .t
shr
 �le.alias gp 'gprolog --query-goal "["'\\\'\!*\\\''"℄"'This allows you to start gprolog and load a s
ript by invoking the
ommand gp s
ript.pl.

Chapter 2Basi
 Prolog SyntaxThis
hapter
overs the basi
 syntax of Prolog from the bottom up. Examples of
ompleteProlog s
ripts are given in Chapter 4.The basi
 syntax of Prolog
onsists of terms. Terms
an be either
onstants, variables orstru
tures. These are
ombined into
lauses and fa
ts whi
h make up a Prolog program.2.1. ConstantsConstants are either alphanumeri
 strings starting with a lower
ase letter (unders
ores areallowed)1 or a number (in GNU Prolog2 these are divided into integers and �oating pointnumbers or �oats � both written with
onventional syntax).Constants (even if they are written as numbers) have no meaning ex
ept as identi�ers. Be
auseof this, we will
onsider
onstants written as numbers as having number syntax, rather thanbeing numbers. A
onstant with number syntax may, if requested by the programmer, beinterpreted as an a
tual number for
ertain purposes.The sto
k data types of strings and
hara
ters may be represented as
onstants in Prolog(with
hara
ters being
onstants of length one). Constants without number syntax are
alledatoms and
onstants in general are
alled atomi
.Some examples of allowed
onstants in GNU Prolog are shown in Figure 2.1.1.Strings george, a, you_may_use_unders
ore, '4youEye$only'Integers 234, -42Floats 34.67, -3.8, 34.2e-4Figure 2.1.1: Examples of valid
onstants in GNU Prolog.1If surrounded by single quotes, any symbols are allowed in the string.2See se
tion 1.2 for more about GNU Prolog. 3

4 BASIC PROLOG SYNTAX2.2. VariablesVariables are alphanumeri
 strings starting with an upper
ase letter (unders
ores are allowed).Variables
an be bound to other terms through uni�
ation3 during exe
ution. Initially in anexe
ution, they are unbound.The following strings are examples of allowed variables in: X, Result, NumberOfReports,My_tax.2.3. Stru
turesStru
tures
onsist of an atom (referred to as the stru
ture's fun
tor) and zero or more subterms(referred to as the stru
ture's arguments or
omponents) in parentheses.Stru
tures have no intrinsi
 meaning beyond stru
tural. The may be used both as Booleanfun
tions (
alled predi
ates) and as data stru
tures (
alled re
ords).The number of subterms in a stru
ture is
alled the arity of the stru
ture. Nullary stru
tures(stru
tures that have arity 0) use no parentheses, i.e. they are just atoms.The following are examples of valid stru
tures in GNU Prolog.peterowns(peter,volvo_S60)owns(peter,X)owns(X,volvo_S60)2.4. ClausesClauses de�ne Boolean fun
tions (
alled predi
ates) by spe
ifying what makes the fun
tiontrue. Clauses are written as follows.S :- S1, S2, S3, S4, ..., Sn. (note the trailing period!),where n ≥ 0, and S and all the Si's are either stru
tures or variables that are instantiated tostru
tures at runtime.For i ≥ 1, a
lause is
alled a rule. The left hand side is
alled the head of the
lause, andright hand side is
alled the body.If i = 0, a
lause may be written simply S.and is then
alled a fa
t.The
ommas used in a rule, denote the logi
al
onjun
tion of the stru
tures on the right hand.Thus, in our example above, S is true if all the Si's are true.A single predi
ate may have several
lauses. The predi
ate is then
onsidered true if at leastone of the
lauses for it is true, i.e. the Boolean value of a predi
ate is the logi
al disjun
tionof all its
lauses.The following are examples of valid
lauses in GNU Prolog:3The pro
ess by whi
h Prolog seeks to ful�ll a goal. See se
tion 3.1.

Operators 5ali
e.owns(peter,volvo_S60).owns(ali
e,X).owns(peter,X) :-
ar(X),smart(X).Here, ali
e is a nullary predi
ate and owns is a binary predi
ate. This is expressed bythe notation ali
e/0 and owns/2. Note that predname/2 and predname/3 are di�erentpredi
ates!2.5. OperatorsOperators in Prolog are binary stru
tures where the fun
tor is written using in�x notation.Unary operators with pre�x notation (but no parentheses) exist too.Noteworthy built-in operators are the standard arithmeti
 operators (+, -, *, et
.) and thelist
onstru
tor . (a period).The identi�er [℄ is a spe
ial
onstant used to denote the empty list. Synta
ti
 sugar/notational
onvenien
e is available for working with lists, e.g. .(3,.(4,[℄)) is the same as 3.(4.[℄)whi
h
an be written as [3,4℄, and expressions su
h as .(Head,Tail) may be written as[Head|Tail℄.In addition it is possible to use the
onventional in�x notation of arithmeti
 operators, e.g.*(6,+(8,9))
an be written as 6*(8+9). Note that the last stru
ture is di�erent from the
onstant 102!2.5.1. Comparing TermsThe usual
omparison operators (<,>,=, et
.) are also available in Prolog, albeit with aslightly di�erent syntax. The following table shows all the built-in
omparison operators andtheir meaning. X == Y X is equal to YX \== Y X is not equal to YX �< Y X is less than YX �=< Y X is less than or equal to YX �> Y X is greater than YX �>= Y X is greater than or equal to YNote that although the
omparison operator == may (for some uses) seem inter
hangeablewith the uni�
ation operator =, the a
tual meaning is vastly di�erent!Terms in gprolog are
ompletely ordered (i.e. any two terms may be
ompared!) in thefollowing manner (least to greatest):- Variables (oldest �rst).- Floating point numbers in numeri
 order.- Integers in numeri
 order.

6 BASIC PROLOG SYNTAX- Atoms in alphabeti
al (i.e.
hara
ter
ode) order.- Compound terms ordered �rst by arity, then by the name of the prin
ipal fun
tor andby the arguments in left-to-right order.2.6. CommentsComments in Prolog are written between /* and */ for
omments spanning multiple linesor after % for single line
omments.

Chapter 3Basi
 Prolog Con
epts3.1. Uni�
ationUni�
ation is the pro
ess by whi
h the Prolog system tests (by means of pattern mat
hing)if two stru
tures
an possibly be equal. If parts of the stru
tures
ompared are variables,su

essful uni�
ation instantiates (assigns a value to) the variables in question.This is perhaps easier to understand by
onsidering the uni�
ation of two stru
tures:[1,peter,X,f(Y,20)℄ and [Z,peter,ali
e,f(2,20)℄.These will unify su

essfully, sin
e the variable Z
an be equal to the
onstant 1; the
onstantpeter is of
ourse equal to itself; the variable X
an be equal to the
onstant ali
e; and thestru
ture f(Y,20)
an be equal to the stru
ture f(2,20), sin
e the variable Y
an be equalto the
onstant 2.As a result of this uni�
ation, the following instantiations will o

ur: X = ali
e, Y = 2 andZ = 1, in a

ordan
e with the above reasoning.It is important to note that assignments inProlog are made by instantiation throughsu

essful uni�
ation.An unsu

essful uni�
ation attempt, for instan
e between the stru
tures f(X,X) and f(1,2),does not instantiate any variables.It is possible to unify two variables, either dire
tly or as a result of uni�
ation between more
omplex stru
tures. These will then
o-refer, meaning that they must have the same value atall times. Thus, if one of the variables is instantiated, the other will be as well.A �nal noteworthy example is uni�
ation of lists formed from the . or | operators. Considerfor instan
e the lists [Head|Tail℄ (shorthand for .(Head,Tail)). These will unify su

ess-fully with Head = 1 and Tail = [2,3,4℄. Thus, the stru
ture [Head|Tail℄ allows us tosplit a list into its head and tail. 7

8 BASIC PROLOG CONCEPTS3.2. Goals, Satisfa
tion and Ba
ktra
kingGoals are Boolean questions asked by the user (e.g. through the prompt in gprolog). Morepre
isely, goals are Boolean statements of the same form as the right hand side of a rule,whi
h the user would like to know if
an be derived as true, using the fa
ts and rules of agiven Prolog s
ript.The Prolog system will try to satisfy a goal by attempting to unify the goal with the
lausesof the s
ript. The
lauses are tested for uni�
ation with the goal one by one, starting withthe topmost
lause.If the goal is su

essfully uni�ed with a fa
t then the goal is satis�ed. If the goal uni�es with arule, the goal
an be satis�ed if the body of the rule
an be. The goal is therefore substitutedby the body of the rule. The terms of body are now subgoals, whi
h the system will try tosatisfy one by one from left to right in the same manner as the original goal.In general, the
urrent goal will be the logi
al
onjun
tion of several subgoals. The Prologsystem attempts uni�
ation between the left-most of these and the head of a
lause in thes
ript. If uni�
ation is possible, the body of this
lause is substituted for the subgoal � inparti
ular, if the
lause in question is a fa
t, the list of subgoals is shortened, sin
e the bodyof a fa
t is empty.If the list of subgoals vanishes, the original goal has been satis�ed, i.e. a derivation of it hasbeen found � it has been proven true from the fa
ts and rules given by the s
ript.If a subgoal
annot be satis�ed ba
ktra
king will take pla
e. Ba
ktra
king is the pro
essby whi
h the Prolog system undoes previous uni�
ations, thereby unsatisfying previouslysatis�ed subgoals, su
h that they be attempted satis�ed in a di�erent way. Instantiations thato

urred as a result of uni�
ations that are undone during ba
ktra
king are also undone, i.e.variables there were instantiated as a result of these uni�
ations be
ome uninstantiated duringba
ktra
king. Naturally, variables
an be reinstantiated during the further sear
h pro
ess.The sear
h pro
edure performed by the Prolog system is equivalent to a depth �rst sear
hin a tree de�ned by the
lauses of the s
ript and the instantiations of variables during thesear
h.As an example of this pro
ess,
onsider the following s
ript.1 a(X,Y,Z) :- b(X,Y),d(Z).23 b(X,X) :-
(X).4 b(1,2).56
(3).7
(4).89 d(5).10 d(6).Assume that we ask the Prolog system to resolve the goal a(X,Y,Z) using the above s
ript.The system will then perform the sear
h shown in �gure 3.2.1In the �gure, nodes represent the
urrent goal and edges represent su

essful uni�
ations ofthe �rst subgoal of the
urrent goal with the head of a
lause. On ea
h edge, the equations

Goals, Satisfa
tion and Ba
ktra
king 9of the solved form
orresponding to the uni�
ation are listed.Note that in ea
h
lause of the
ode, the variables are lo
al variables, hen
e new uniquevariable names are introdu
ed at ea
h uni�
ation with the head of a
lause of the
ode.1
X = X1

Y = Y 1

Z = Z1

X1 = X2

Y 1 = X2

X2 = 3

Z1 = 5 Z1 = 6

X2 = 4

Z1 = 5 Z1 = 6

X1 = 1

Y 1 = 2

Z1 = 5 Z1 = 6

a(X,Y,Z)b(X1,Y1),d(Z1)
(X2),d(Z1)d(Z1) d(Z1) d(Z1)
= su

essFigure 3.2.1: The sear
h tree produ
ed by the Prolog system whentrying to resolve the goal a(X,Y,Z) using the above s
ript. Thenodes represent the
urrent goal and the edges represent su

essfuluni�
ations, the results of whi
h are listed on the
orrespondingedge.When the sear
h rea
hes a su

essful leaf, the
al
ulated answer is the solved form of theset of equations on the path from the leaf to the root. However, only the equations for thevariables o

uring in the original goal are reported. Hen
e, the six possible reported answersare:

X : 3 3 4 4 1 1
Y : 3 3 4 4 2 2
Z: 5 6 5 6 5 6Note, GNU Prolog stops at �rst solution found and display the instatianted variables (ifany). The user may request another solution by entering ; at the prompt. In addition, allsolutions may be requested by entering a. Further answers are produ
ed by ba
ktra
king and
ontinuing the sear
h.1The need for lo
al variables is
lear if we
onsider an initial goal of e.g. a((X,Y),Z,Q), where the variablesX and Y in the goal and in the head of the �rst
lause
learly are independent.

10 BASIC PROLOG CONCEPTSBa
ktra
king is dis
ussed in detail in Chapter 5. For now tho, we will pro
eed to study somesmall Prolog s
ripts that make use of what we have seen so far.

Chapter 4Learning by DoingThis
hapter
ontains several examples of Prolog s
ripts. Some of the examples illustrateuseful programming te
hniques. It is re
ommended that you read the s
ripts and the providedoutput, and try to follow the derivation pro
edure.4.1. A Simple S
ript1 /* A simple s
ript about (heterosexual)
ouples: */23 male(peter).4 male(paul).5 female(beatri
e).6 female(ali
e).7 female(
lepatra).89 diffSex(X,Y) :- male(X),female(Y).1011 possibleCouple(X,Y) :- diffSex(X,Y), likes(X,Y), likes(Y,X).1213 likes(peter,ali
e).14 likes(ali
e,peter).15 likes(paul,ali
e).16 likes(paul,beatri
e).17 likes(paul,
lepatra).The following is a trans
ript of a gprolog session using the above s
ript. See if you
an followthe derivation pro
edure performed by gprolog for ea
h query.
11

12 LEARNING BY DOING
1 Q:23 | ?- female(ali
e).45 A:67 yes89 Q:1011 | ?- female(Y).1213 A:1415 Y = beatri
e ? ;1617 Y = ali
e ? ;1819 Y =
lepatra2021 yes2223 Q:2425 | ?- likes(paul,X).2627 A:2829 X = ali
e ? ;3031 X = beatri
e ? ;3233 X =
lepatra3435 yes3637 Q:3839 | ?- likes(
leopatra,X).4041 A:

4243 no4445 Q:4647 | ?- diffSex(X,Y).4849 A:5051 X = peter52 Y = beatri
e ? ;5354 X = peter55 Y = ali
e ? ;5657 X = peter58 Y =
lepatra ? ;5960 X = paul61 Y = beatri
e ? ;6263 X = paul64 Y = ali
e ? ;6566 X = paul67 Y =
lepatra6869 yes707172 Q:7374 | ?- possibleCouple(X,Y).7576 A:7778 X = peter79 Y = ali
e ? ;8081 no

Predi
ates as Fun
tions 134.2. Predi
ates as Fun
tions1 /* The predi
ate myAppend(L1, L2, L3) is true if and only if2 the
on
atenation of L1 and L2 is equal to L3 */34 myAppend([℄,L,L).5 myAppend([X|L1℄,L2,[X|L3℄) :- myAppend(L1,L2,L3).The following is a trans
ript of a gprolog session using the above s
ript.1 Q:23 | ?- myAppend([1,2℄,[3℄,[1,2,3℄).45 A:67 yes89 Q:1011 | ?- myAppend([1,2℄,[3℄,[1,2,4℄).1213 A:1415 no1617 Q:1819 | ?- myAppend([1,2℄,[3℄,L3).2021 A:2223 L3 = [1,2,3℄.2425 Q:2627 | ?- myAppend(L1,[3℄,[1,2,3℄).2829 A: L1 = [1,2℄3031 Q:3233 | ?- myAppend(L1,L2,[1,2,3℄).3435 A:3637 L1 = [℄38 L2 = [1,2,3℄

3940 L1 = [1℄41 L2 = [2,3℄4243 L1 = [1,2℄44 L2 = [3℄4546 L1 = [1,2,3℄47 L2 = [℄4849 Q:5051 | ?- myAppend(L1,L2,L3).5253 A:5455 L1 = [℄56 L3 = L2 ? ;5758 L1 = [A℄59 L3 = [A|L2℄ ? ;6061 L1 = [A,B℄62 L3 = [A,B|L2℄ ? ;6364 L1 = [A,B,C℄65 L3 = [A,B,C|L2℄ ? ;6667 L1 = [A,B,C,D℄68 L3 = [A,B,C,D|L2℄ ? ;6970 L1 = [A,B,C,D,E℄71 L3 = [A,B,C,D,E|L2℄ ? ;7273 L1 = [A,B,C,D,E,F℄74 L3 = [A,B,C,D,E,F|L2℄ ?7576 et
....

14 LEARNING BY DOINGAs seen in the above trans
ript, predi
ates
an be used as fun
tions (with results
reatedthrough uni�
ation). The return value of this sort of fun
tion is one of the arguments. Formany predi
ates, the situation is as seen in the trans
ript; all arguments may potentially serveas the return value.4.3. Performing Arithmeti
 OperationsAs the followingGNU Prolog s
ript shows, it is possible to interpret
onstants with numbersyntax as a
tual numbers and use these in arithmeti
 operations.1 /* An example finding N fa
torial (the predi
ate fa
torial(N,F) is true if2 (N is instantiated and) F is N fa
torial). */34 fa
torial(0,1).56 fa
torial(N,F) :-7 N>0,8 N1 is N-1,9 fa
torial(N1,F1),10 F is N * F1.Here, > is a built-in predi
ate written as an in�x operator. The arguments of < must be(variables instantiated to) stru
tures whi
h
an be interpreted as arithmeti
 expressions (e.g.2*3+4). In the
ase of variables, these must be instantiated at the time satisfa
tion is at-tempted. Note that N-1 is a stru
ture, not a number.The built-in predi
ate is evaluates su
h a stru
ture (any stru
ture whi
h
an be interpretedas an arithmeti
 expression) and uni�es the result with the left argument.The following is a trans
ript of a gprolog session using the above s
ript.1 Q:23 | ?- fa
torial(4,24).45 A:67 true89 Q:1011 | ?- fa
torial(4,25).1213 A:1415 no1617 Q:

1819 | ?- fa
torial(3,F).2021 A:2223 F = 62425 Q:2627 | ?- fa
torial(N,6).2829 A:3031 An error message, be
ause32 variables taking part in '>'33 and 'is' are not instantiated.

Writing Output 154.4. Writing Output1 /* Programming example: Towers of Hanoi */23 hanoi(N) :- move(N,left,
entre,right).45 /* Arguments: Number of dis
s, sour
e dis
, destination dis
, spare dis
 */67 move(0,_,_,_).8 move(N,A,B,C) :-9 N >= 1,10 M is N-1,11 move(M,A,C,B),12 inform(A,B),13 move(M,C,B,A).1415 inform(X,Y) :- write(X),write('->'),write(Y),nl.Here, write/1 is a built-in predi
ate whi
h su

eeds on
e, and as a side e�e
t prints a repre-sentation of its argument on s
reen. The predi
ate nl/0 similarly prints a newline.The following shows a test run of the above s
ript using gprolog.1 | ?- hanoi(3).2 left->
entre3 left->right4
entre->right5 left->
entre6 right->left7 right->
entre8 left->
entre

Chapter 5Ba
ktra
king and...Cut!5.1. Ba
ktra
king RevisitedWe now brie�y return to the ba
ktra
king pro
ess. Consider the following Prolog s
ript.1 a :-
,b.2 a :-
.34 b :- e.5 b :- e,
,f.6 b :-
.78
.9
.1011 e :- fail.12 e.1314 f.15 f.16 f.For the sake of
larity, no variables o

ur in this example, hen
e no instantiations will o

ur(uni�
ation, however, still o

urs).We will now
onsider the sear
h tree generated by Prolog when asked to resolve the goal a.This tree is shown in Figure 5.1.1 Note that the predi
ate fail/0 will not unify with anything(it always fails), whi
h shows that leaves in the tree do not ne
essarily indi
ate su

esses. Tryto follow the satisfa
tion pro
ess.5.2. Making the CutWhile the ability of the Prolog system to ba
ktra
k may be extremely useful, there are stillsituations where we wish to avoid (or
ontrol) this. For this, Prolog provides the built in16

Making the Cut 17a
,bbe e,
,f
,ff f

 be e,
,f
,ff f

= su

ess= shorthand for the node failFigure 5.1.1: The sear
h tree
onsidered by Prolog when asked toresolve the goal a using the above s
ript.predi
ate !/0,
alled the
ut predi
ate. The
ut predi
ate always su

eeds, but has the sidee�e
t of
ommitting all
hoi
es made to the left of it in a rule. That is, how predi
ates on theright hand side of the rule that
ome before the
ut were satis�ed and whi
h rule was
hosenfor the predi
ate on the left hand side. Consider for example the rule b :- e,
,!,f. The
ut will
ommit the
hoi
e of rule for
, e and b.Thus, the e�e
t of a
ut on the ba
ktra
king pro
ess is that if a
ut is attempted resatis�ed,the sear
h pro
ess
ontinues at the node two levels above the highest node
ontaining this
utpredi
ate in its goal list. From this node, the next non-visited
hild is sear
hed. Said anotherway, when a
ut is unsatis�ed, all
hoi
es that the
ut has
ommitted are also unsatis�ed.To illustrate this
onsider the above Prolog s
ript with an added
ut.1 a :-
,b.2 a :-
.34 b :- e.5 b :- e,
,!,f.6 b :-
.78
.9
.1011 e :- fail.12 e.13

18 BACKTRACKING AND...CUT!14 f.15 f.16 f.The sear
h tree for the goal a will then be as shown in Figure 5.2.1. Bold arrows denote jumps
aused by the added
ut, and subtrees no longer visited are shown on a gray ba
kground.a
,bbe e,
,!,f
,!,f!,ff !,ff

 be e,
,!,f
,!,f!,ff !,ff

= su

es= shorthand for the node failFigure 5.2.1: The sear
h tree
onsidered by Prolog when askedto resolve the goal a using the above s
ript (with the added
ut).Bold arrows denote jumps
aused by the added
ut, and subtreesno longer visited are shown on a gray ba
kground.5.3. Common Uses of Cuts1There are three
ommon uses of
uts:- Con�rming the
hoi
e of a rule,- For
ing failure (using the so-
alled �
ut-fail�
ombination), and- Terminating �generate and test�
ode.We will examine these uses in the following se
tions.1This se
tion adapted from [CM94℄.

Common Uses of Cuts 195.3.1. Con�rming the Choi
e of a RuleImagine that we want to write a Prolog predi
ate sum_to(N,R) that instantiates R to thesum of 1, . . . , N. Initially, we may attempt the following de�nition of sum_to.1 sum_toWrong(N,1) :- N=<1.2 sum_toWrong(N,R) :-3 N1 is N-1,4 sum_toWrong(N1,R1),5 R is R1 + N.But as the following output shows us, this de�nition of the predi
ate does not provide the
orre
t answer (or rather, it provides wrong answers as well!).1 | ?- sum_toWrong(2,R).23 R = 3 ? ;45 R = 4 ? ;67 R = 4 ? ;
89 R = 3 ? ;1011 R = 1 ? ;1213 R = -2 ? ;14

15 R = -6 ? ;1617 R = -11 ?1819 et
.The reason for this is that, when asked for more solutions Prolog initiates ba
ktra
king.This
auses the system to unsatisfy the last satis�ed goal and attempt to resatisfy it in adi�erent way. It is easy to see that the last satis�ed goal must been satis�ed by the base
ase(sum_toWrong(N,1)).However, on
e the base
ase has been applied to satisfy a goal, we do not wish for this goalto be satis�ed in a di�erent way. We
an a
hieve this by inserting a
ut as shown in thefollowing de�nition of sum_to.1 sum_toGood(N,1) :- N=<1,!.2 sum_toGood(N,R) :-3 N1 is N-1,4 sum_toGood(N1,R1),5 R is R1 + N.As shown in the following test run, this de�nition produ
es only one (
orre
t) result.1 | ?- sum_toGood(2,R).23 R = 345 yes5.3.2. The �Cut-Fail� CombinationThere may be situations in whi
h we wish to for
e the Prolog system to fail when attemptingsatisfa
tion of a goal. For example, we may know that if a
ertain
ondition is true, a goalshould not be satis�able.

20 BACKTRACKING AND...CUT!Consider, for instan
e, the following Prolog s
ript designed to identify average tax payers.1 in
ome(peter,400000).2 foreigner(peter).34 average_taxpayerWrong(X) :- foreigner(X), fail.5 average_taxpayerWrong(X) :- in
ome(X,I), I < 500000.Here the built in predi
ate fail/0 is used to for
e a failure. It is
lear that the goalaverage_taxpayerWrong(peter) should fail, sin
e Peter is a foreigner. However, as thefollowing output shows, this is not the
ase.1 | ?- average_taxpayerWrong(peter).23 yesThis is be
ause the fail/0 predi
ate initiates ba
ktra
king, whi
h
auses the Prolog systemto attempt satisfa
tion of the goal using another rule. And sin
e the goal is satis�able byanother rule (the next one), the system reports that it has satis�ed the goal.Again, this
an be remedied by inserting a
ut as follows.1 average_taxpayer(X) :- foreigner(X), !, fail.2 average_taxpayer(X) :- in
ome(X,I), I < 500000.The output shown below shows that this new de�nition gives the
orre
t answer.1 | ?- average_taxpayer(peter).23 noIn this
ase, it would be more natural to use the built in �not satis�able� operator \+. The\+ operator is de�ned su
h that \+X is satis�able if only if X is not satis�able. This allow forthe following de�nition of the average_taxpayer predi
ate, i.e. an average tax payer is nota foreigner and has an in
ome less than 500000.1 average_taxpayer(X) :- \+foreigner(X), in
ome(X,I), I < 500000.5.3.3. Terminating �Generate and Test� CodeA typi
al type of programing in Prolog is so-
alled �generate and test�
ode. This type of
ode involves generating a solution and testing if it is
orre
t. Consider, for example, thefollowing s
ript to perform integer division.Here, we use the is_integer/1 predi
ate to generate a result and the div_test/3 predi
ateto test if it is
orre
t.1 /* Divide N1 by N2 */2 divide(N1, N2, Result) :-

Common Uses of Cuts 213 is_integer(Result),4 div_test(N1, N2, Result),5 !.67 /* Generate all integers */8 is_integer(1).9 is_integer(X) :- is_integer(Y), X is Y+1.1011 /* Test for N1/N2 = D */12 div_test(N1,N2,D) :-13 P1 is N2*D,14 P2 is N2*(D+1),15 P1 =< N1,16 P2 > N1.We have pla
ed a
ut at the end of the divide predi
ate, be
ause we know that there is onlyone possible
hoi
e of Result that will satisfy the predi
ate, and therefore do not wish to
onsider further values of Result. In fa
t, were we to �allow� ba
ktra
king by removing the
ut, the s
ript would simply run forever if we did not a

ept the initial (only) result.

Referen
es[CM94℄ Clo
ksin and Mellish: Programming in Prolog, 5
th ed., Springer, 2003.

22

