
Data Processing: Formats and Tools

a topic in

DM565 – Formal Languages and Data Processing

Kim Skak Larsen

Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark (SDU)

kslarsen@imada.sdu.dk

September, 2023

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 1 / 33

Motivation

There is so much data and information that we can use to understand the world
better and to create useful applications; see the next page for an example of data
collections.

To exploit all of this data efficiently, we need tools for examining data quickly
(prototyping) before we make our choices and design an application (possibly in a
standard programming language).

To decide on which tools to use and how, we need some understanding of the
formats in which data is stored.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 2 / 33

Motivation

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 3 / 33

Data Formats

There is an abundance of formats:

HTML, JSON, XML, CVS, XHTML, TSV, TXT, DOC, MOV, TIFF, DOCX,
PDF, XLS, XLSX, PDF, TEX, PNG, GIF, MPG, SQL, JPG, RTF, MARKDOWN,
KML, . . .

To organize this, we divide them into three rough categories.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 4 / 33

Data Formats in Rough Categories

Tabular Data
sql, csv, tsv, (xls, etc.), . . .

Parentheses Structures
xml, json, markdown, (html), . . .

Others
mpg, jpg, pdf, doc, . . .

In the “others” category, data extraction is problematic, either nearly impossible or
requiring specialized tools such as image analysis or similar.

We focus on the first two. . .

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 5 / 33

Tabular Data Formats

These are data formats implementing a list of records (tuples, rows) such as

Animal Cuteness

Giant Panda 1.0
Sea Otter 0.95
Meerkat 0.9
Rabbit 0.8
Red Panda 0.8
Leopard 0.7
Clown Fish 0.4
Python 0.1
Rat 0.07
Tarantula 0.00001

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 6 / 33

Tabular Data Formats

Tabular data can be encoded as text files using a designated separator character
between fields and newline between two records.

tsv – tab-separated values – is one such standard, where \t (tab) is the separator
character.

csv – comma-separated values – is another standard, where the separator
character is a comma. Sometimes this term is used broadly for the general idea,
and one can specify the separator character (to be tab, for instance).

These formats may come with a header record, i.e., a first line specifying the
names of the different fields.

sql tables, xlsx documents, or similar may contain tabular data, but often with
more complex additional information. However, the tabular information itself can
often be exported to a csv file, for instance.

Thus, tabular information can often be processed by line-based tools.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 7 / 33

CSV-Like Formats

No absolute standard, but special characters such as comma (if that is the
separator) and newline must be quoted or escaped.

Likely “rules” to check data for:
Header record, possibly optional.
Same number of comma-separated fields in each record.
What should be escaped and how? For instance, fields with commas and
newlines should be quoted and then a quote should be doubled.

Be aware regarding the following:
Spaces are probably part of a field.
Is an empty line white-space or an empty record?

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 8 / 33

CSV-Like Formats: Example

The one record

Animal Cuteness

Giant, "The Cutie", Panda 1.0

should likely be represented as

"Giant , ""The Cutie"", Panda" ,1.0

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 9 / 33

CSV-Like Formats: Resources

https://frictionlessdata.io/specs/csv-dialect/

https://docs.python.org/3/library/csv.html

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 10 / 33

https://frictionlessdata.io/specs/csv-dialect/
https://docs.python.org/3/library/csv.html

CSV-Like Formats: Python CSV Module

> cat example .csv
Giant Panda ,1.0
Sea Otter ,0.95
Meerkat ,0.9
Rabbit ,0.8
Red Panda ,0.8
Clown Fish ,0.4
Python ,0.1
Tarantula ,0.00001
>

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 11 / 33

CSV-Like Formats: Python CSV Module

> cat readWriteCSV .py
import csv
exampleFile = open(’example .csv ’, ’r’)
exampleReader = csv. reader (exampleFile)
exampleData = list(exampleReader)
exampleFile .close ()
print(exampleData)
outputFile = open(’output .csv ’, ’w’)
outputWriter = csv. writer (outputFile)
for record in exampleData :

outputWriter . writerow (record)
outputWriter . writerow ([’Leopard ’, ’0.7 ’])
outputFile .close ()
> python3 readWriteCSV .py

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 12 / 33

CSV-Like Formats: Python CSV Module

prints

[[’Giant Panda ’, ’1.0 ’], [’Sea Otter ’, ’0.95 ’], [’Meerkat ’, ’0.9 ’], [’Rabbit ’,
’0.8 ’], [’Red Panda ’, ’0.8 ’], [’Clown Fish ’, ’0.4 ’], [’Python ’, ’0.1 ’], [’Tara
ntula ’, ’0.00001 ’]]

and output.csv contains
> cat output .csv
Giant Panda ,1.0
Sea Otter ,0.95
Meerkat ,0.9
Rabbit ,0.8
Red Panda ,0.8
Clown Fish ,0.4
Python ,0.1
Tarantula ,0.00001
Leopard ,0.7
>

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 13 / 33

CSV-Like Formats: Python CSV Module

Can specify various things such as
delimiter

lineterminator

. . .

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 14 / 33

CSV-Like Formats

One can convert back and forth between CSV formats and many other formats.
Most spreadsheets and database management systems support the format.

Some editors support the format such that one can get a better editing
experience, e.g., getting a column-based layout.

Ex: emacs has modes for operating on TSV or CSV files.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 15 / 33

Data Transformation

Recall the natural steps in a data transformation process:

data discovery
data mapping
code generation
code execution
data review

Parts of the process are repeated if the data review is not completely successful.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 16 / 33

Command-Line Tools

It is what developers use. . . Among many other tools, of course.

“Native” in Linux and macOS.

Possible in Windows via Windows Subsystem for Linux (WSL 2).

You probably saw a very brief introduction to command-line tools first year.

Everything we do with command-line tools could be done using Java or Python,
so why bother?

Fast and easy data discovery
Fast, easy, and incremental code generation (prototyping)
Highly efficient code execution on large datasets

How to Learn
Try all the commands on small examples, do the exercises, check the man-pages.
Long-term learning: Decide never to do anything repetitive again!

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 17 / 33

Command-Line Tools for Data Discovery

Pitfalls

Character encoding: ascii, UTF-8, ISO-8859, . . .

Line separator: Unix style newline (LF) or MS-DOS-style (CRLF).
LF is \n (ascii 10), CR is \r (ascii 13).

Tools

wc – print newline, word, and byte counts for each file argument.

file – determine file type of file argument.

recode – convert between character sets, e.g., recode l1..u8.

od – octal dump, i.e., actually see the bytes, e.g.,
od -tcuC – show byte value in decimal and ascii character if printable.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 18 / 33

Command-Line Tools for Data Discovery

Examples
myfile contains the one line “blåbærgrød”; originally encoded in Latin1, but then
we recode to UTF-8.

> file myfile
myfile : ISO -8859 text
> wc myfile

1 1 11 myfile
> od -tcuC myfile
0000000 b l 345 b 346 r g r 370 d \n

98 108 229 98 230 114 103 114 248 100 10
0000013
> recode l1..u8 myfile
> file myfile
myfile : UTF -8 Unicode text
> wc myfile

1 1 14 myfile
> od -tcuC myfile
0000000 b l 303 245 b 303 246 r g r 303 270 d \n

98 108 195 165 98 195 166 114 103 114 195 184 100 10
0000016
>

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 19 / 33

Command-Line Tools for Code Generation

Example tools include

grep
sed
gawk (GNU awk)
sort
uniq
tr
cut
paste
join
head/tail

The first three use regular expressions, as do editors, programming languages, etc.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 20 / 33

Regular Expressions in Practice

Major differences between regular expressions in practice and regular expressions
from formal languages textbooks:

Alphabets are large (in the hundreds); not just {0, 1} or {a, b}.
Some symbols in the alphabet are not printable characters.
Operators of regular expressions are characters, and are also in the alphabet.

These issues create problems that we discuss now.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 21 / 33

Regular Expressions in Practice

We introduce short-hands such as (examples depend on the tool)
. matches any one character different from \n.
[a-z] matches any one character in the given range.
^ matches the empty string, but only at the beginning of a line.

We “make” the most popular non-printable characters representable, such as \n,
\t, \r, . . .

We escape either the operators or the characters with the same representation as
the operators, e.g.,

We have seen examples where union (or) is written \|.
We have seen examples where the parentheses in (.*) groups the regular
expression .*, so then the parenthesis character must be represented by \(.
And of course backslash must be backslashed!

The choice of what to escape is tool-dependent.
Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 22 / 33

Command-Line Tools

The tools can do more than we show; sometimes much more.

Basic and often sufficient information can be found via the man-pages, e.g.,
man grep.

Many of the tools have online manuals or tutorials available and books can be
purchased.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 23 / 33

Command-Line Tool: grep
global regular expression print

How to Learn
The word file is great for testing, because it has lots of data, but it is still
relatively easy to to determine if a correct answer has been found. It is also always
good to make small examples.

At https://gist.github.com/WChargin/8927565, you can find a classic file of
words, present on some systems as /usr/share/dict/words.

Primary Functionality
grep reports lines containing a substring matching the regular expression, i.e., a
substring in the language of the regular expression.

It takes a file as input or reads input from stdin:

> grep ’42’ filename
> cat filename | grep ’42’

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 24 / 33

https://gist.github.com/WChargin/8927565

Command-Line Tool: grep

Before we discuss the regular expressions used in grep, we discuss one option
commonly used, namely -E.

When using the option, basically all characters that have special meaning are
unescaped; when using grep without that option, the following are interpreted as
regular characters and must be escaped to be interpreted as operators:

?, +, |, (,), {, }

Unless one is matching these special characters, regular expressions are often more
readable when using grep -E.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 25 / 33

Command-Line Tool: grep

Examples
In the file
()
ac

grep ’()’ – the first line is a match
grep ’(a|b)c’ – no matching lines
grep ’\(a\|b\)c’ – the second line is a match

On the other hand,
grep -E ’()’ – both lines match (the parenthesis are just grouping so the
regular expression is equivalent to ε which is a substring of any line)
grep -E ’(a|b)c’ – the second line is a match
grep -E ’\(a\|b\)c’ – no matching lines

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 26 / 33

Command-Line Tool: grep
We now go through the operators of the regular expressions used by grep -E.

The simplest expressions are characters in the alphabet. If they are special
characters, they must be escaped (as on the previous slide). The same goes for
non-printable characters such as tab or newline.

The standard operators union and Kleene star are represented by | and *. Writing
two regular expressions next to each other indicates concatenation.

Example
grep -E ’Kim Skak\tLarsen|Tobias Klink\tLehn’ will match lines where
one of your educators appear in a representation where first names and last names
are separated by a tab.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 27 / 33

Command-Line Tool: grep
^ matches ε, but only first on a line. Similarly, $ matches ε, but only last on a line.

. matches any single character different from newline.

Example
Words starting and ending with a “k” can be found by

grep -E ’^k.*k$’ /usr/share/dict/words

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 28 / 33

Command-Line Tool: grep
Character groups can be defined using square brackets. If ^ is placed immediately
following the opening square bracket, the defined character set is the complement
relative to the alphabet. Hyphens can be used to indicate ranges.

Examples
[aeiouy] matches any single vowel and [^aeiouy] matches any single character
that is not a vowel.
[a-zA-Z0-9_] matches any single character normally allowed in an identifier in a
programming language.

^ is only special when appearing first: [^^] matches any character which is not ^.

Some predefined character ranges exist such as, for instance,
[:alnum:] for alpha-numeric
[:punct:] for punctuation
[:digit:] for digits

They only define the range, so [a-zA-Z0-9] could also be written [[:alnum:]].

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 29 / 33

Command-Line Tool: grep
Commonly used repetition constructs in addition to * has been added (r is some
regular expression and n and m are natural numbers):
r+ – one or more repetitions of r (same as rr*)
r? – zero or one r (same as ε|r)
r{n,m} – matches if r can be matched at least n and at most m times.

Abbreviations
{n} means {n,n}

{n,} means {n,∞}

{,m} means {0,m}

Example
The line

prerequisite

gives a match with grep -E ’(re){2}’. We also get a match with
grep -E ’(re){1}’ and grep -E ’(re){0}’ (which is equivalent to ε), but
not with grep -E ’(re){3}’.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 30 / 33

Command-Line Tool: grep
Every time parenthesis are used, also when we just use them to resolve a
precedence issue, they define a group that we can refer to later using
backreferencing.

The expression \1 matches the exact string that the first group matched. Nine
groups can be handled, allowing us to write one positive digit after the backslash.

Examples
The words “bonbon” and “mama” (alone on a line) are a match to
grep -E ’^(.*)\1$’.

The words ‘abracadabra‘” and “hotshots” are a match to
grep -E ’^(....).*\1$’.

grep -E ’^(.)(.)(.)\3\2\1$’ finds palindromes of length 6.

grep -E ’(.)(.)(.).\3\2\1’ finds lines containing a palindrome of length 7,
such as "interpreter".

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 31 / 33

Command-Line Tool: grep

More Examples
US dollar amounts can be captured by \$[0-9]+(\.[0-9]{2})?

US times can be captured by ([1-9]|1[012]):[0-5][0-9] (am|pm)

Lines starting and ending with the same word can be captured by
^([[:alpha:]]+) .* \1$

Lines with two separate parentheses can be captured by the following:

Using grep -E:
grep -E ’(\(.*\).*){2 ,} ’

Using grep without the -E option:
grep ’\((.*).*\)\{2 ,\} ’

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 32 / 33

Command-Line Tool: grep
grep has lots of options that can be useful in different situations, e.g.,

-n print the line number when finding matching lines in a file
-v negate matches, i.e., print lines not matching the regular expression
-i ignore case

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 33 / 33

