
Data Processing: Formats and Tools (part 2)

a topic in

DM565 – Formal Languages and Data Processing

Kim Skak Larsen

Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark (SDU)

kslarsen@imada.sdu.dk

September, 2023

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 1 / 30

Some Relatively Simple Command-Line Tools

sort
uniq
tr
cut
paste
join
head/tail

These are all linux filters, i.e., they do not change their input, but produce output
on stdout, and can be used in pipes, just like the more complicated grep, sed,
and (g)awk.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 2 / 30

Command-Line Tools: sort

Options for common issues (selected)

ignore blanks
ignore case
sort numerically, alphabetically, by month, version numbers, . . .
specify which field to sort on
specify delimiters
reverse

Example
Sort numerically on the 5th column, showing the larger numbers (file sizes) first:

> ls -l | sort -n -r -k5

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 3 / 30

Command-Line Tools: uniq

“filter out adjacent matching lines” – often used after sort

Options for common issues (selected)

ignore case
print only unique or duplicate lines
consider only the first or last some number of characters
consider only some fields
count duplicates

Example
Remove duplicates, ignoring the first field:
> cat myfile
41 1 2 3
42 1 2 3
43 3 2 1
> cat myfile | uniq -f1
41 1 2 3
43 3 2 1
>

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 4 / 30

Command-Line Tools: tr

“translate or delete characters”

Options for common issues (selected)

delete characters in a given set
delete consecutive duplicates of a character, leaving one occurrence
translate by specifying two character sequences of the same length

Example
Change and delete some characters:

> cat myfile
41 Forty+one
42 Forty+two
43 Forty+three
> cat myfile | tr ’F+’ ’f-’ | tr -d ’ [: digit :]’
forty -one
forty -two
forty -three
>

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 5 / 30

Command-Line Tools: cut

“remove sections from each line of files”

Options for common issues (selected)

select numbered bytes
only keep certain characters
select some fields
specify delimiter
specify output delimiter

Example
Change input/output delimiters and keep columns 2 and 3:

> cat myfile
x:41: one
y:42: two
> cat myfile | cut -d: --output - delimiter =’ ’ -f2 ,3
41 one
42 two
>

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 6 / 30

Command-Line Tools: paste

“merge lines of files”

Options for common issues (selected)

specify delimiter (default is \t)
serial mode (the lines in each file will be concatenated into one line)

Example
Paste lines using space instead of the default tab:

> cat myfile1
41
42
> cat myfile2
forty -one
forty -two
> paste -d’ ’ myfile1 myfile2
41 forty -one
42 forty -two
>

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 7 / 30

Command-Line Tools: join

“join lines of two files on a common (sorted) field” – similar to dbms equi-join

Options for common issues (selected)

ignore case
specify delimiters
specify join field

Example
Join lines on a common field (first field is default):

> cat myfile1
42 A
42 C
43 B
> cat myfile2
41 X
42 Y
> join myfile1 myfile2
42 A Y
42 C Y
>

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 8 / 30

Command-Line Tools: head/tail

“output the first/last part of files”

Options for common issues (selected)

specify the number of lines
specify start line
specify bytes instead of lines

Example
Print the first two lines of the last 10 (default) lines:

> seq 50 | tail | head -2
41
42
>

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 9 / 30

Command-Line Tools: sed

stream-oriented, non-interactive, text editor

Specify patterns (similar to grep),
but change (edit) the matching lines,
not interactively, but via a script – a sequence of commands.
Changes are applied to a line successively, i.e., after one modification, the
next change (to the same line) is applied to the modified line.
A command consists of address information and an action; the address
information can restrict the lines affected to some subset.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 10 / 30

Command-Line Tools: sed

Using standard specification syntax, a command has the form

[address[,address]][!]command[arguments]

(Unfortunately, syntax varies a lot; in manuals and similar documents, [...] is
used instead of (...)?, i.e., zero or one occurrence.)

An address can be a line number ($ can be used to mean “the last line”) or a
pattern, which is simply a regular expression (grep-style) surrounded by slashes.

Two addresses can be used to specify an interval and ! negates the address
information.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 11 / 30

Command-Line Tools: sed

Examples: On Address Specification
d delete all lines
42d delete line 42
1,10!d delete all lines except lines 1–10
1,/^$/d delete from line 1 through first blank line
/^$/,$d delete from the first blank line through the last line
/42/,42d delete from the first line containing the number 42 through line 42
/^Proof/,/qed$/d

delete from the first line starting with “Proof”
through the first line ending with “qed”

So, on command-line, one writes, for instance,
cat myfile | sed ’42!d’

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 12 / 30

Command-Line Tools: sed

Useful Options

A filename can be given as argument to sed; if omitted, input comes from stdin.

-n suppress output, unless an explicit print command is issued (see later)
-f the next argument is a file name containing a script
-e the next argument is a command

(if necessary to avoid confusion with a file name argument
-E use regular expression syntax as for grep -E

#n as the first line of a script is an alternative to -n

The print command p is used exactly like d.

Unless -n is used, printed lines will come out twice.

However, p together with -n can be useful when there are several commands.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 13 / 30

Command-Line Tools: sed

Substitute
The substitute command s takes arguments and optionally flags. Leaving out the
address specification, the syntax is

s/pattern/replacement/[flags]

A flag can be a number i, indicating that it is the ith occurrence that should be
replaced. The flag g (global) indicates that all occurrences should be replaced,
and p prints.

The pattern is just a regular expression (grep-style).

The replacement string can contain special characters:
\d the dth group from the pattern (grep-style)
& the entire string matched by the regular expression

\\ backslash
\& ampersand

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 14 / 30

Command-Line Tools: sed

Examples

We can fix a spelling error by
sed -E ’s/iether/either/g’

We can translate the second occurrence of “datalogi” on each line by
sed -E ’s/datalogi/computer science/2’

We can change “datalogi” to “datalogistudiet” by
sed -E ’s/datalogi/&studiet/g’

If a file contains two columns, separated by one colon, we can switch the two
columns using
sed -E ’s/(.*):(.*)/\2:\1/’

Regular expressions match strings as long as possible, left to right.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 15 / 30

Command-Line Tools: sed

Transform
The sed-equivalent of tr is the command y, performing one-to-one
character-to-character replacement (can be prefixed by addresses).

Example
sed ’y/123/234/’ will increment all the digits 1, 2, and 3.

Quit
The quit command q stops processing when (if) the single address specification is
reached.

Example
sed ’10q’ will terminate after the first 10 lines have been processed.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 16 / 30

Command-Line Tools: sed

Other Commands
There also command for inserting and appending before or after a line, changing
lines in a fixed manner, and more, but the syntax becomes more cumbersome and
it might be nicer to use other tools.

Multiple Commands
sed is most convenient for simple changes, possibly by piping into another sed.
However, multiple commands are possible, with the following somewhat odd
requirements.

Format:
[address [, address]][!]{
command [arguments]
.
.
command [arguments]
}

where the opening brace must be last on a line and the closing alone on a line.
Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 17 / 30

Command-Line Tools: awk

Aho, Weinberger, Kernighan

We will use gawk (GNU awk), but usually just say “awk”.

a full programming language
can be used on command-line or via script
handles fields nicely (not just lines)
understands numbers (not just text)
C-like syntax, but also grep-like patterns
an awk script is a sequence of pattern {action}

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 18 / 30

Command-Line Tools: awk

Patterns
BEGIN and END are special patterns that only match at the begining or end of
a file, respectively, used for initialization and announcement of results
regular expressions enclosed in /.../

C-like conditionals with comparisons and logical connectives: &&, ||, !

s ~ r is true if the string s matches the regular expression r (asymmetric!);
use double quotes around the arguments if they contain special symbols
arithmetic and built-in mathematical functions

Actions
C-like statements
if there is no action, lines matching the pattern are printed (sed-style)

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 19 / 30

Command-Line Tools: awk

Example
ls | gawk ’

BEGIN {print "List of tex files :" ; count = 0}
/\. tex$/ { print; count += 1 }
END { print "Total :", count , "files" }
’

gives output (in my example)
List of tex files:
2023 lecture .tex
def - colors .tex
lecture .tex
preamble .tex
Total: 4 files

Alternatively, one can print with C’s printf.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 20 / 30

Command-Line Tools: awk

Field Manipulation
RS is the record separator (default newline)
FS is the field separator (default other maximal whitespace sequences)
OFS is the output field separator (default space)
NR is the number of the current record (line)
NF is the number of fields in the current record
$1, $2, . . . , $0 are the fields and the entire record

Examples
cat myfile | gawk ’{ print NR, $2 * $3, $(NF-2)}’ prints the line
number, the value of fields 2 and 3 multiplied together, and the third to last field.

We can assign to the field variables as in
cat myfile | gawk ’{ $1 = $2; $2 = ""; print }’

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 21 / 30

Command-Line Tools: awk

Built-In Functions
The linux command wc can be realized as follows:
gawk ’

BEGIN { OFS = "\t" }
{ chars += length ($0) + 1; words = words + NF }
END {print NR , words , chars , FILENAME }
’ myfile

+1 since $0 does not include newline.
Variables are initialized to the empty string or zero as appropriate.

Also
string concatenation – placing strings next to each other separated by blanks
substr(s, m, n) – n characters from position m in s

advanced split operations
system calls and exit

dictionaries, including ARGV (ARGC for the length of ARGV)

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 22 / 30

Command-Line Tools: awk

Control Structures
if-then-else
while and do-while
for-loops C-style and for (key in array) { ... }

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 23 / 30

Command-Line Tools: awk

Example
Print input in reverse order:
cat myfile | gawk ’

{ line[NR] = $0 }
END {

for (i=NR; i > 0; i -= 1) {
print line[i]

}
}
’

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 24 / 30

Command-Line Tools: awk

Useful Options

Filenames can be given as argument to gawk; if omitted, input comes from stdin.

-f the next argument is a file name containing the program
-F the next argument is to be used as input field separator
-v var=val initialize a variable prior to execution

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 25 / 30

JSON-Like Formats: JSON

JavaScript Object Notation

JSON

{ " animals ": [
{

"name": "Panda",
" cuteness ": 1.0,
" colors ": ["white", "black"]

},
{

"name": " Panther ",
" cuteness ": 0.7,
" colors ": ["black"]

}
]

}

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 26 / 30

JSON-Like Formats: XML

eXtensible Markup Language

XML

<animals >
<animal >

<name >Panda </name >
<cuteness >1.0 </ cuteness >
<color >white </ color >
<color >black </ color >

</animal >
<animal >

<name >Panther </name >
<cuteness >0.7 </ cuteness >
<color >black </ color >

</animal >
</animals >

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 27 / 30

JSON-Like Formats

There is more to both formats.
The essence is that it is named parentheses structures expressing records
(attribute/value pairs) and sequences (arrays, lists).
There are many variants of XML (HTML) with similar structure.
Command-Line tools can to some extent be used for data discovery, and
possibly simple code execution.
To get full power, use a programming language with an appropriate package.
Packages read json/xml files and deliver data in native formats.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 28 / 30

JSON-Like Formats: Python Example

> cat animals .json
{ " animals ": [

{
"name": "Panda",
" cuteness ": 1.0,
" colors ": ["white", "black"]

},
{

"name": " Panther ",
" cuteness ": 0.7,
" colors ": ["black"]

}
]

}
>

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 29 / 30

JSON-Like Formats: Python Example

Prints
{
"a": 1,
"b": 2,
"c": 3,
"d": 4,
"e": 5
}
Panda

import json

Data in program for testing
json_data = ’{"c": 3, "d": 4, "a": 1, "b": 2, "e": 5}’

parsed_json = json.loads(json_data)
print(json.dumps(parsed_json , indent =4, sort_keys =True))

It is just dictionaries and lists
with open(’animals .json ’, ’r’) as f:

animals_dict = json.load(f)
print(animals_dict [" animals "][0]["name"])

Kim Skak Larsen (IMADA) DM565 topic: Data Processing September, 2023 30 / 30

