
Compilers: Introduction and Scanners

a topic in

DM565 – Formal Languages and Data Processing

Kim Skak Larsen

Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark (SDU)

kslarsen@imada.sdu.dk

September, 2023

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 1 / 25



Compilers

Typically, transforming high level constructs to low level constructs.

Ex: Compiling Java to Java bytecode or C to X86 Assembly.

There are many high-level languages, and more keep coming.

Many domain-specific languages require compiler technology, such as LATEX, lex
(flex), yacc (bison), html expansions, etc.

Many companies maintain their own collection of “compilers” for screen control,
dbms interfaces, etc.

Jakob E. Bardram, Co-founder of Monsenso (on Nasdaq), September 14, 2021:
For a while, I thought that newer CS topics could replace older ones in
the curricula. I was wrong! It’s really important that they [the students]
learn the classic material as well; compiler technology, for example.

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 2 / 25



Compiler Phases

The Minimum

Scanner

Parser

Symbol Collection

Type Checking

Code Generation

Emit

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 3 / 25



Compiler Phases

Front End

Analysis: “Ensuring that the input program is correct”

Scanner

Parser

Symbol Collection

Type Checking

Weed phases can be inserted where required. They are for tasks not covered by
the above, and therefore separate for modularity.

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 4 / 25



Compiler Phases

Back End

Synthesis: “Generating code for the correct input program”

Code Generation

Emit

Optimization phases can be inserted before code generation or after; important
options include

liveness analysis and register allocation
peep-hole optimization
garbage collection

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 5 / 25



Lexical Analysis: scanners

Scanner

Parser

Symbol Collection

Type Checking

Code Generation

Emit

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 6 / 25



Lexical Analysis: scanners

Input to phase

A stream of characters (the user program).

Output from phase

A stream of lexical units.

Ex: function, identifier (“Fibonacci”), (, identifier (“n”), :, int, . . . , LEQ, num
(“42”), . . .

Typically, want to ignore comments and whitespace (used as delimiters, but not
output to next phase).

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 7 / 25



Overview of Lecture

1 How do we make software for this phase?
2 How do we use existing software for this (flex)?
3 How is it done in scil?

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 8 / 25



Crafting a Scanner

Overall Considerations

Regular expressions is the most convenient formalism for specifying tokens: It
is compact and we do not have to draw or specify large transition functions.
DFAs are perfect for running the scanner: Simple, deterministic actions.
Need: A tool that converts (a collection of) regular expressions to a DFA.
A direct conversion is complicated; our tool will combine regular expressions
into an NFA, which is then converted to a DFA.

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 9 / 25



Crafting a Scanner

Desired Functionality: Regular Expressions

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 10 / 25



Crafting a Scanner

Desired Functionality: Omni-Present Tokens

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 11 / 25



Crafting a Scanner

Desired Functionality: Extent of Match

We do not want just one match; we want to split up the entire input into tokens
using repeated, non-overlapping matches.

Is counter42 an identifier or an identifier follow by a number?
Is if42 an identifier or a keyword followed by a number?
Is if an identifier or a keyword?

We resolve these issue with a prioritized list of decisions:
1 Longest match (from the input)
2 First match (in the definition file)

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 12 / 25



Crafting a Scanner

Desired Functionality: Omni-Present Tokens

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 13 / 25



Crafting a Scanner

Ad Hoc Constructed DFA

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 14 / 25



Crafting a Scanner

Running the DFA

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 15 / 25



Crafting a Scanner

Combine to NFA

The approach is really very clean (the above has been postprocessed).
1 Make state names in the component DFAs unique.
2 Combine all components by introducing a new start state with ε-transitions

to all start states for the individual components.
3 Mark the accepting states from each component with their token type.

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 16 / 25



Crafting a Scanner
Convert the NFA to a DFA

Mark accept states with the token type listed first among all the accept states
from the NFA that now make up the set of states in the DFA.

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 17 / 25



Flex

Fast lexical analyser generator

Tool available for many programming languages: C, Java, . . .

Same functionality available in Python with native syntax.

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 18 / 25



Flex

Format

%{
C DEFINITIONS

%}
FLEX DEFINITIONS

%%
REGULAR EXPRESSIONS AND ACTIONS

%%
C CODE

Special variables
yytext – last matched string
yyleng – length of last matched string
yylval – associated value to the parser, e.g., when the token is INT, the
value is passed on via yylval
Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 19 / 25



Flex

Flex Example

first.l

%option noyywrap tells flex that there is only one input file.

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 20 / 25



Flex

How to Run Flex

> flex FILENAME .l -- makes lex.yy.c
> gcc lex.yy.c -- makes a.out
> ./a.out < INPUTFILE -- running on the input in INPUT_FILE

The above is for a stand-alone application using flex. Later, we will see how to
combine the flex scanner with the next phase of a compiler.

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 21 / 25



Flex

Flex Examples

counting.l

weird.l

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 22 / 25



Flex

Syntax rules varies from program parts to comments, strings, embedded database
code, etc.

In flex, we can move between different states to use completely separate rule
sets.

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 23 / 25



Flex

Realizing Multiple Flex States

State specifiers are first on the line, and the functionaly is realized via the keyword
BEGIN.

yyless(1) tells flex to back up one already read input character.

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 24 / 25



Scil

Scanner Construction in Python

In Python, the same functionality known from flex is realized using a more native
Python code style using the module ply.lex.

See how it is done in scil. . .

Kim Skak Larsen (IMADA) DM565 topic: Compilers September, 2023 25 / 25


