
Data Cleaning & Scraping

a topic in

DM565 – Formal Languages and Data Processing

Kim Skak Larsen

Department of Mathematics and Computer Science (IMADA)
University of Southern Denmark (SDU)

kslarsen@imada.sdu.dk

October, 2023

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 1 / 21

Data Cleaning

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 2 / 21

Data Cleaning

We discuss frequently occurring problems in tabular data.

Realize that there are errors in most data – usually lots of errors – due to
programming problems, data transfer/format problems, or data entered by many
different people, most of which are incompetent or do not care.

Your command-line toolbox can be very helpful in this process.

Before really starting,

check character encoding so you know what it is and can treat it correctly in
your tools – and/or recode to your favorite, and
cut down on the noise by getting rid of columns and rows you do not need –
bigger problems if there are missing column separators!

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 3 / 21

Data Cleaning: Format Examples

Perform a Manual Inspection of Column Types

Not just string or int, but more narrowly,

names (person, city, product)
zip codes
Y/N entries or other true/false equivalents
email addresses
dates

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 4 / 21

Data Cleaning Format Examples

For each column, perform type checking as accurately as possible, i.e.,

a name is a string, but more precisely a string without digits and (most)
special characters with a certain capitalization pattern; there may be
downloadable lists of given names, city names, etc.
a zip code is a string (or integer), but more precisely exactly four digits (if
Danish); in fact you can download a file from postnord with all existing zip
codes
for Y/N like entries, check if there is anything else
email addresses have well-defined formats they have to adhere to
for fields of potentially unlimited length, consider finding the longest

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 5 / 21

Data Cleaning: Domains

For small domains,

collect all values in the ith field (cut -fi or gawk ’{print $i}’ – new
delimiter ex. -d "," or -F ",", respectively),
sort (can specify sorting type),
remove duplicates (uniq), and
inspect the result.

For larger domains,

count the number of occurrences of each value, and
inspect the histogram profile (possibly graphically),
with special focus on values occurring seldomly or very frequently.

For columns appearing to be unique identifiers, check for duplicates!
(As a first check, see if the file size changes after running uniq on the column.)

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 6 / 21

Data Cleaning: Missing Values

In the process above, you may have found missing values; especially blanks.
However, be aware of common “missing value” notation such as

- (or more)
? (or more)
NA, N/A (not applicable)
NaN (not a number)
None, null, nil, void, etc.

– with or without capitalization, but unfortunately also “will be provided later”,
“currently missing”, and lots of other options.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 7 / 21

Data Cleaning: Fixes and Accepts

It may be clear that a blank in a Y/N column is an N and not a missing value.
It may be clear that 1/1 70 is a date and should be replaced with 1/1 1970;
or maybe more appropriately with 1970-01-01.
We wanted full names, but maybe we can live with Kim S. Larsen, which is
clearly not a full name.
We may be able to deduce the full email address of kslarsen@imada.
City names not appearing in the official list can maybe be changed to the
nearest match; spelling-correction style.
Zip code/city name inconsistencies may be fixable because of the redundant
information.
Values may be logically deducible; if we collected survey information and a
couple had 2 children in 2015 and 2 children in 2017, a missing number of
children in 2016 is likely correctable.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 8 / 21

Data Cleaning: Replacement

Some missing data is unfixable – how can we get something we can live with?

Missing street number – there is no reasonable way of guessing: can we live
without it, maybe use additional databases, or just delete the row?
Missing number of kids - it is tempting to use the average, but listing 3.14
kids may cause problems later on. For some purposes, making up a believable
number (the median, for instance) may work (imputation).
Missing distance from home to birth place - again, the average might be
tempting, but it is often a bad idea. Ranging over a few people, where most
live close to their birth place, but one is from another continent gives an
average that places the person in one of the oceans! Using the median may
again be preferable.
One may want to consider using regression analysis to impute the most
reasonable values.
Be careful if data is not missing at random, e.g., people are less likely to
deliver possibly embarrassing information such as voting for an extreme party,
having an extreme income, etc.
Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 9 / 21

Data Cleaning Tools

There are tools worth considering if problems are even worse or you have to do
this frequently, e.g.,

pandas, for Python
tidyverse, for R

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 10 / 21

Web Scraping

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 11 / 21

Web Scraping

Web scraping (web harvesting, web data extraction) is about extracting data from
a web page that is not yours.

You may want to
scrape information from a lot of pages, or
scrape information from the same page repeatedly (because it updates).

The former is often referred to as web crawling, and since many pages are
involved and formats are unknown, it is hard to extract exact information other
than keywords, links, modification times, etc.

Focusing on scraping from the same page(s) repeatedly, check if the home page
provides an API (most do not); otherwise, you could use tools you have already
seen.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 12 / 21

Web Scraping by Searching

Using tools you already have, you could
download the html page,
find the interesting information by searching,
identify the textual surroundings, and
create regular expression searches for extracting exactly the information you
want, possibly via a programming language and its built-in searching facilities.

To get the page the first time, you could, for example, choose “More tools” →
“Save page as. . . ” in Google Chrome; when you automatize, you may want to use
GNU wget, if you use command-line tools, or the appropriate package/library
from your programming language.

Note that wget will get the raw page, whereas browsers may change the content
some before saving.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 13 / 21

Web Scraping Tools

If you want to extract a lot information from a page or you want to be immune to
minor textual changes, you can use a tool.

html is much like xml, except there is some sloppiness, especially regarding closing
the parenthesis-like structures.

Thus, it is a tree where nodes can be annotated and have a varying number of
children.

Each programming language offers its own tools; one such tool for Python is
Beautiful Soup.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 14 / 21

Beautiful Soup

Beautiful Soup needs a parser for html; we prefer lxml.

You can obtain a page to be used as input for BeautifulSoup by

import requests
from bs4 import BeautifulSoup

page = requests .get("https :// imada.sdu.dk/u/ kslarsen /dm565/notes.php")

soup = BeautifulSoup (page.content , "lxml") # "html. parser " can also be used

In the rest, for speed and reproducibility, we will just write example data directly
in the Python program.

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 15 / 21

Beautiful Soup and lxml

lxml tries to fix errors and return a nicely structured document; other parsers
work similarly, but may produce different trees.

from bs4 import BeautifulSoup

soup = BeautifulSoup ("Kim Skak Larsen ", "lxml")
print(soup)
<html ><body ><p>Kim Skak Larsen </p></body ></html >

soup = BeautifulSoup ("First Second ", "lxml")
print(soup)
<html ><body >First Second </body ></html >

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 16 / 21

Beautiful Soup: Example Features

from bs4 import BeautifulSoup

soup = BeautifulSoup ("First Second ", "lxml")
print(soup)
<html ><body >First Second </body ></html >

print(soup.body.ul)
First Second

print(soup.ul)
First Second

print(soup.li)
First

print(soup. find_all (’li’))
[First , Second]

for child in soup.ul:
print(child)

First
Second

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 17 / 21

Beautiful Soup: Example Features (continued)

soup = BeautifulSoup ("First Second ", "lxml")
print(soup)
<html ><body >First Second </body ></html >

print(soup.li. next_sibling)
Second

print(soup.li. next_sibling . parent .li)
First

print(soup. find_all (string =" Second ")[0]. parent)
Second

BS = BeautifulSoup
soup = BS("First Second A Second B", "lxml")
print(soup.li.li)
None

soup = BS("First AFirst BSecond ", "lxml")
print(soup.li.li)
First A

print(soup.li.li. string)
First A

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 18 / 21

Beautiful Soup: Example Features (continued)

BS = BeautifulSoup
soup = BS(’ important ’, "lxml")
print(soup.a[’href ’])
https :// imada.sdu.dk/u/ kslarsen /

print(soup.a. get_attribute_list (’href ’))
[’https :// imada.sdu.dk/u/ kslarsen /’]

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 19 / 21

Beautiful Soup Example

import requests
from bs4 import BeautifulSoup

page = requests .get("https :// imada.sdu.dk/u/ kslarsen /dm565/ innovation .php")
soup = BeautifulSoup (page.content , "lxml")

Printing all dates of activities in IMADA ’s Conference Room
samples = soup. find_all ("td")
for sample in samples :

if sample . string == "IMADA ’s Conference Room":
print(sample . parent .td. string)

6/11
13/11
14/11
29/11
30/11
21/12

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 20 / 21

Beautiful Soup: Extras

regular expressions can be used instead of string search
many find-variants
support for CSS selectors
operators for modifying the tree
pretty-printing
support for various encodings

Kim Skak Larsen (IMADA) DM565 topic: Data Processing October, 2023 21 / 21

