
Scil Version 1.0.3 Documentation

Kim Skak Larsen

October 11, 2019

Abstract
This documents the Scil compiler implementation meant for teach-

ing purposes, and the name is an acronym for “A simple compiler in
a learning environment”. The goal of the implementation is to illus-
trate important compiler techniques in a simple setting and to enable
the students to make minor adjustments and extensions. The source
language is a simple imperative language, with integers being the only
type, but including expressions, assignments, control structures, and
function definitions and calls, including recursion and static nested
scope. The target language is 64 bit X86 Assembly/GAS Syntax. The
discussions here detail the language and the use of this software in a
linux environment. Note that focus is on clarity in the compiler code
as well as in the generated assembler code and not on efficiency or
optimizations.

Introduction

This documentation is very brief and will likely be extended. It can only
be understood fully with some knowledge of standard programming lan-
guages and the workings of a compiler, corresponding to an introductory
undergraduate course on the topic.

Development

The Scil compiler is written in Python, developed using Python 3.6.7, and
the ply package version 3.11.
Attempts were made to follow the PEP 8 style guide for python code and
verify this via flake8, using the command

1

python3 -m flake8 --exclude parsetab .py *.py

parsetab.py is generated by the ply package and does not conform to
PEP 8. Due to conditions in the same package, a few lines in the file
lexer_parser.py are longer than recommended.

Use

On command line, the compiler can be run as

./ compiler .py < test_file .src

Or prefixed with python (python3) if the file compiler.py does not have
execution permissions.
Output is sent to stdout. Thus to run the compiled programs, one possible
command sequence is:

./ compiler < test_file .src > assembler_file .s
gcc -no -pie assembler_file .s
./a.out

If the input program is bugged, the first detected error is reported and
compilation is terminated.
A small collection of test programs are available in the test directory.

Language

Scil is a very simple imperative programming language designed for teach-
ing. It has only one native type, integer, so all variables are of that type.
Comparison operators are included, so Boolean expressions in a limited form
are available in if-then-else-statements (else cannot be omitted) and while-
statements. Additionally, the language includes basic arithmetic, assign-
ment, a print statement (no input), and, most importantly, function defini-
tions and calls. It supports static nested scope. Compound statements are
surrounded by curly brackets (C-style), but these do not introduce a new
scope.
The language is partially defined by the grammar of Fig. 1.

2

〈program〉 : 〈body〉
〈body〉 : 〈optional_variables_declaration_list〉

〈optional_functions_declaration_list〉
〈statement_list〉

〈optional_variables_declaration_list〉 : ε
| 〈variables_declaration_list〉

〈variables_declaration_list〉 : var 〈variables_list〉
| var 〈variables_list〉 〈variables_declaration_list〉

〈variables_list〉 : ident
| ident , 〈variables_list〉

〈optional_functions_declaration_list〉 : ε
| 〈functions_declaration_list〉

〈functions_declaration_list〉 : 〈function〉
| 〈function〉 〈functions_declaration_list〉

〈function〉 : function ident (〈optional_parameter_list〉) { 〈body〉 }
〈optional_parameter_list〉 : ε

| 〈parameter_list〉
〈parameter_list〉 : ident

| ident , 〈parameter_list〉
〈statement〉 : return 〈expression〉 ;

| print 〈expression〉 ;
| ident = 〈expression〉 ;
| if 〈expression〉 then 〈statement〉 else 〈statement〉
| while 〈expression〉 do 〈statement〉
| { 〈statement_list〉 }

〈statement_list〉 : 〈statement〉
| 〈statement〉 〈statement_list〉

〈expression〉 : integer
| ident
| ident (〈optional_expression_list〉)
| 〈expression〉 bin_op 〈expression〉
| (〈expression〉)

〈optional_expression_list〉 : ε
| 〈expression_list〉

〈expression_list〉 : 〈expression〉
| 〈expression〉 , 〈expression_list〉

Figure 1: The grammar defining Scil.

3

In the grammar, ident and integer are written as terminal symbols, but
they represent usual identifiers and non-negative integers. bin_op can be
any of the standard four arithmetic operations (division is integer division)
or any of the six comparison operators (C-style). There is no unary minus.
A type checking phase ensures that programs are statically type correct
before target code is generated.
It is a requirement that a return statement is the last statement executed
in any scope (〈body〉); this includes the main scope, which should normally
return zero.

Phases

The phases of the compiler are listed in Fig. 2.

Scanner

Parser

Symbol Collection

Type Checking

Preparation

Code Generation

Emit

Figure 2: The phases of Scil.

The scanner and parser phases implement lexical and syntax analysis and
are tightly coupled due to the use of the ply package. The phase returns an
abstract syntax tree (AST).
The symbol collection phase collects all identifiers from the AST, adding
them to a symbol table, organized in units corresponding to the scopes of
the user program. The phase registers the placement of variables and formal

4

parameters in sequences for later use in connection with offsets in the code
generation phase.
Using the AST and the symbol table, the type checking phase checks that
the program is statically correct.
The preparation phase traverses the AST and equips functions with labels
for the subsequent code generation. This is necessary if functions are de-
fined in an order different from bottom-up with regards to their use. Thus,
without this, mutual recursion would not be possible (or some patching-up
would be required in the code generation phase).
The code generation phase generates the assembler code from the AST,
using a few meta-instructions that indicate caller/callee code blocks, etc.
The emit phase outputs the finished assembler.

Contact

Reports of errors or suggestions for improvements are received with grat-
itude. Please contact the author in person or by sending an email to
kslarsen@imada.sdu.dk.

5

