
Online Algorithms

Kim Skak Larsen

Department of Mathematics and Computer Science
University of Southern Denmark

kslarsen@imada.sdu.dk

Advanced Algorithms (DM582)
May 7, 2024

DM582, Spring, 2024 Kim Skak Larsen 1

About These Slides

Disclaimer

These slides contain much more text than I usually put on slides.

The reason is that no good text exists for this material at this level. So, the

slides should replace a textbook.

Thus, the slides will be less suited for lecturing.

DM582, Spring, 2024 Kim Skak Larsen 2

Online Problems and Algorithms

A problem is an online if the following holds:

We must process a non-empty, finite request sequence.

Each request must be processed before we receive the next request.

We must make an irrevocable decision for each request.

The decisions while processing the sequence results in some cost.

In the intro course, you saw

ski rental 1

bin packing

machine scheduling

An online algorithm is an algorithm for an online problem.

1 A simplified version of power saving for screens, etc.
DM582, Spring, 2024 Kim Skak Larsen 3

Competitive Analysis

Competitive analysis is one way to measure the quality of an online algorithm,

i.e., how are we at keeping the cost low.

Idea

Let Opt denote an optimal offline algorithm.

“Offline” means getting the entire input before having to compute, which

corresponds to knowing the future!

We calculate how well we perform compared to Opt.

Notation

Alg(I) denotes the cost of running algorithm Alg on the request sequence I.

Thus, Opt(I) is the cost of running Opt on I.

We are intuitively interested in minimizing Alg(I)
Opt(I) , but this of course varies

with I. To give a guarantee, we must find the ratio for a worst sequence.

DM582, Spring, 2024 Kim Skak Larsen 4

Competitive Analysis

∀I Alg(I)
Opt(I) ≤ c

∀I is one way to look at it, but we often talk about it as a game between us

and an adversary that knows our algorithm and tries to make the hardest

possible sequence for us.

An algorithm, Alg, is c-competitive if there exists a constant, b, so that

∀I : Alg(I) ≤ cOpt(I) + b

Alg has competitive ratio c if

c is the best 2 (smallest) c for which Alg is c-competitive.

2 Formally, it is inf {c | Alg is c-competitive}.
DM582, Spring, 2024 Kim Skak Larsen 5

Review of Machine Scheduling

m ≥ 1 machines.

n jobs of varying sizes arriving one at a time to be assigned to a machine.

The goal is to minimize makespan, i.e., finish all jobs as early as possible.

Algorithm List Scheduling (Ls): place next job on a least loaded machine.

DM582, Spring, 2024 Kim Skak Larsen 6

Machine Scheduling: List Scheduling example

1

1

4

4

5

5

3

3

4

4

7

7

1
4 5

3
4

7

M1 M2 M3 M4

Ls

1
4 5

3

4 7

M1 M2 M3 M4

Opt

10
7

DM582, Spring, 2024 Kim Skak Larsen 7

Machine Scheduling: List Scheduling example

1

1
4

4

5

5

3

3

4

4

7

7

1

4 5
3

4

7

M1 M2 M3 M4

Ls

1

4 5

3

4 7

M1 M2 M3 M4

Opt

10
7

DM582, Spring, 2024 Kim Skak Larsen 8

Machine Scheduling: List Scheduling example

1

1

4

4 5

5

3

3

4

4

7

7

1
4

5
3

4

7

M1 M2 M3 M4

Ls

1
4

5

3

4 7

M1 M2 M3 M4

Opt

10
7

DM582, Spring, 2024 Kim Skak Larsen 9

Machine Scheduling: List Scheduling example

1

1

4

4

5

5
3

3

4

4

7

7

1
4 5

3
4

7

M1 M2 M3 M4

Ls

1
4 5

3

4 7

M1 M2 M3 M4

Opt

10
7

DM582, Spring, 2024 Kim Skak Larsen 10

Machine Scheduling: List Scheduling example

1

1

4

4

5

5

3

3 4

4

7

7

1
4 5

3

4

7

M1 M2 M3 M4

Ls

1
4 5

3

4 7

M1 M2 M3 M4

Opt

10
7

DM582, Spring, 2024 Kim Skak Larsen 11

Machine Scheduling: List Scheduling example

1

1

4

4

5

5

3

3

4

4
7

7

1
4 5

3
4

7

M1 M2 M3 M4

Ls

1
4 5

3

4

7

M1 M2 M3 M4

Opt

10
7

DM582, Spring, 2024 Kim Skak Larsen 12

Machine Scheduling: List Scheduling example

1

1

4

4

5

5

3

3

4

4

7

7

1
4 5

3
4

7

M1 M2 M3 M4

Ls

1
4 5

3

4 7

M1 M2 M3 M4

Opt

10
7

DM582, Spring, 2024 Kim Skak Larsen 13

Machine Scheduling: List Scheduling example

1

1

4

4

5

5

3

3

4

4

7

7

1
4 5

3
4

7

M1 M2 M3 M4

Ls

1
4 5

3

4 7

M1 M2 M3 M4

Opt

10
7

DM582, Spring, 2024 Kim Skak Larsen 14

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1 1

mm

M1 M2
. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 15

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1

1 1 1
1 1 1 1
1 1 1 1

mm

M1 M2
. . . Mm

Opt

1

1 1
1 1 1
1 1 1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 16

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1 1

1 1
1 1 1 1
1 1 1 1

mm

M1 M2
. . . Mm

Opt

1 1

1
1 1 1
1 1 1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 17

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1 1 1

1
1 1 1 1
1 1 1 1

mm

M1 M2
. . . Mm

Opt

1 1 1

1 1 1
1 1 1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 18

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1 1 1 1

1 1 1 1
1 1 1 1

mm

M1 M2
. . . Mm

Opt

1 1 1
1

1 1
1 1 1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 19

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1 1 1 1
1

1 1 1
1 1 1 1

mm

M1 M2
. . . Mm

Opt

1 1 1
1 1

1
1 1 1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 20

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1 1 1 1
1 1

1 1
1 1 1 1

mm

M1 M2
. . . Mm

Opt

1 1 1
1 1 1

1 1 1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 21

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1 1 1 1
1 1 1

1
1 1 1 1

mm

M1 M2
. . . Mm

Opt

1 1 1
1 1 1
1

1 1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 22

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1 1 1 1
1 1 1 1

1 1 1 1

mm

M1 M2
. . . Mm

Opt

1 1 1
1 1 1
1 1

1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 23

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1 1 1 1
1 1 1 1
1

1 1 1

mm

M1 M2
. . . Mm

Opt

1 1 1
1 1 1
1 1 1

1 1 1
m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 24

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1

1 1

mm

M1 M2
. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1

1 1
m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 25

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

m

m

M1 M2
. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1

1

mm

M1 M2
. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1

1
m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 26

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
m

m

M1 M2
. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1 1

mm

M1 M2
. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 27

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

mm

M1 M2
. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1 1

m

m

M1 M2
. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 28

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

mm

M1 M2
. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1 1

m

m

M1 M2
. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1 1

m

(m− 1)m

m− 1

m

m

DM582, Spring, 2024 Kim Skak Larsen 29

Machine Scheduling: Ls is at best (2− 1
m)-competitive

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

m

m

M1 M2
. . . Mm

Ls

1 1 1 1
1 1 1 1
1 1 1 1

m

m

M1 M2
. . . Mm

Opt

1 1 1
1 1 1
1 1 1
1 1 1

m

(m− 1)m

m− 1

m

m

Ls(I)

Opt(I)
≥ (m− 1) +m

m
=

2m− 1

m
= 2− 1

m

DM582, Spring, 2024 Kim Skak Larsen 30

Machine Scheduling: Ls is (2− 1
m)-competitive

1 2 m

V

t

ℓ

Ls

t is the length of the job starting at ℓ

and ending at the makespan

T is the total length of all jobs

Define V = ℓ ·m
Now conclude:

Opt ≥ T/m and Opt ≥ t

T ≥ V + t, due to Ls’s choice for t

Ls = ℓ+ t

≤ T−t
m + t, since ℓ = V

m and V ≤ T − t

= T
m + (1− 1

m)t

≤ Opt+(1− 1
m)Opt, from Opt inequalities above

= (2− 1
m)Opt

DM582, Spring, 2024 Kim Skak Larsen 31

Machine Scheduling

Since we have both an upper and lower bound, we have shown the following:

Theorem
The algorithm Ls for minimizing makespan in machine scheduling with m ≥ 1
machines has competitive ratio 2− 1

m .

DM582, Spring, 2024 Kim Skak Larsen 32

The k-Server Problem 3

The k-server problem was introduced

in [Manasse, McGeoch, Sleator, STOC, 1988]

The problem concerns the cost of moving servers around in some space.

Thus, we should be precise about what space and costs are.

3 This exposition is a simplified version of the proofs
from [Borodin & El-Yaniv, book, 1998].
DM582, Spring, 2024 Kim Skak Larsen 33

Metric Spaces

(M,d) is a metric space, if

M is a set of points

d : M ×M → R is a distance function

The distance function should fulfill, for all points x, y, z ∈ M :

d(x, x) = 0

x ̸= y ⇒ d(x, y) > 0

d(x, y) = d(y, x)

d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality)

DM582, Spring, 2024 Kim Skak Larsen 34

k-Server: The Problem

An algorithms controls k mobile servers that are located on points in some

metric space, (M,d).

The algorithm must serve some requests. A request, r, is a point in space, and

the request is served if the algorithm moves a server to that point (or there is

a server there already).

Given a sequence of requests, σ = r1, r2, . . . , rn, the algorithm must serve each

request sequentially.

Moving a server from some point ri to rj , incurs a cost of d(ri, rj).

The objective of an algorithm, Alg, is to serve all requests at the smallest

possible total cost. We denote Alg’s cost on σ by Alg(σ).

In the online k-server problem, the algorithm is not informed of the next

request (ri+1) until it has served the current (ri).

DM582, Spring, 2024 Kim Skak Larsen 35

k-Server: Laziness

There are no restrictions on how the algorithms move servers. For instance,

they may move several servers at the same time just to serve one request.

(This may sound silly but we will see later that this can make sense.)

However, for such an algorithm, we can make a lazy variant as follows:

Simply run the algorithm virtually, i.e., simulate the algorithm internally.

When a server virtually reaches the request, then actually move that server

directly to the request. This could move the server using a different route than

what was done virtually, but, by the triangle inequality, the cost is no larger.

Remember where all the servers are in the virtual simulation and continue to

the next request.

Due to the triangle inequality, the lazy version of an algorithm will have a

total cost less than or equal to the original algorithm.

DM582, Spring, 2024 Kim Skak Larsen 36

k-Server: General Lower Bound

Theorem

Let (M,d) be a metric space with at least k + 1 points. Then any online
algorithm for the k-server problem has a competitive ratio of at least k.

Proof Let Alg be an online algorithm for the k-server problem. We must

design an arbitrarily long 4 sequence, σ, such that there exists a constant, b,

such that Alg(σ) ≥ kOpt(σ)− b.

Without loss of generality, we assume that Alg is lazy.

Choose any k + 1 points, p1, p2, . . . , pk+1, from M .

Assume Alg initially has its servers on p1, . . . , pk.

For any n, we define = r1, r2, . . . , rn as follows. After serving i ≥ 0 requests,

Alg has left exactly one point, say pj , uncovered. We define ri+1 = pj .

We consider the cost of the sequence σ = r1, r2, . . . , rn−1.

4 Actually, it needs to be arbitrarily expensive for Opt, but that is the same thing here.
DM582, Spring, 2024 Kim Skak Larsen 37

k-Server: General Lower Bound (2)

Proof (continued)

By definition of σ, Alg serves the request ri with the server on ri+1.

Thus, the cost of serving the first request is d(r2, r1).

Summing up the cost of serving the n− 1 requests, we obtain the following

lower bound on the cost of Alg:

Alg(σ) ≥
n−1∑
i=1

d(ri, ri+1)

Next, we need to find an upper bound on the cost of Opt.

DM582, Spring, 2024 Kim Skak Larsen 38

k-Server: General Lower Bound (3)

Proof (continued) Let B be a collection of k different server algorithms

defined as follows:

For any set S ⊂ {p1, p2, . . . , pk+1}, where r1 ∈ S and |S| = k, let BS be the

algorithm which starts with a server on all points in S.

Thus, there are k different algorithms in B, depending on which point is

initially unoccupied.

On a request, ri, if ri is unoccupied, BS will move the server currently on ri−1

to ri (the one on rn if ri = r1).

DM582, Spring, 2024 Kim Skak Larsen 39

k-Server: General Lower Bound (4)

Proof (continued) The k algorithms in B will remain in different

configurations.

We prove this by induction in the number of requests served. It clearly holds

after zero requests have been served. For the induction step, consider any two

of these algorithms, BS and BS′ , and let ri be the next request.

ri is in both configurations: Neither moves and the configurations are still

different.

ri is in one configuration but not in the other. If ri is in the

configuration, no action is taken, so there is of course still a server on the

previous request, ri−1. The other server algorithm will, however, move a

server away from ri−1 to ri, so the configurations disagree on ri−1.

ri is missing from both configurations. Since, by the induction

assumption, the configurations are different, they must disagree on some

point pj ̸= ri−1. After their moves from ri−1 to ri, they still differ on rj .

DM582, Spring, 2024 Kim Skak Larsen 40

k-Server: General Lower Bound (5)

Proof (continued) Consider the total cost of all k algorithms at the same time.

Since they are all in different configurations at all times, only one does not

have a server on any given request ri, so only one algorithm moves from ri−1

to ri. (On the first request, none of them have any cost.)

Thus, the total cost of all the algorithms is at most
∑n−1

i=2 d(ri−1, ri).

One of the algorithms, BS , must have a cost that is at most the average,

1

k

n−1∑
i=2

d(ri−1, ri)

We choose that as our Opt. Clearly, Alg(σ) ≥ kOpt(σ).

If we would like to assume that Opt starts in the same configuration as Alg,

we can set the constant b mentioned first in the proof to the cost of initally

moving one server from the point not in S to pk+1. □

DM582, Spring, 2024 Kim Skak Larsen 41

k-Server: Algorithms

Now that we know the limits of what we can obtain, how do we design a good

algorithm?

Actually, one of the most famous conjectures in the area is the following:

Conjecture

For the k-server problem on any metric space, there exists a deterministic
online k-competitive algorithm.

We will not solve that conjecture today; instead we will consider simple metric

spaces, where we know how to prove this.

What is the most natural algorithm?

DM582, Spring, 2024 Kim Skak Larsen 42

k-Server: The Simplest Nontrivial Problem

Consider the line with three points:

a b c

s1 s2

Assume that k = 2 and the servers are initially on a and c.

The algorithm Greedy moves the server that can serve the request at as low

a cost as possible.

How does it perform on σ = b, a, b, a, b, a, b, a, . . .?

How does Opt perform on the same sequence?

We define an algorithm that solves any problem on the line.

DM582, Spring, 2024 Kim Skak Larsen 43

k-Server: Double-Coverage on the Real Line

Define algorithm DC as follows:

If the request is on the same side of all servers, move the nearest server to

the request.

If the request is in between two adjacent servers, move both towards the

request at equal speeds until one reaches the request.

What does DC on the three points?

DM582, Spring, 2024 Kim Skak Larsen 44

k-Server: DC’s Competitive Ratio

Theorem
DC is k-competitive.

Proof Let Mmin be the minimum weight matching between DC’s and Opt’s

servers. Denote DC’s servers by s1, s2, . . . , sk and also use that notation for

their positions. Define
∑

DC =
∑

i<j d(si, sj), i.e., all distances between pairs

of DC servers.

We assume Opt and DC take turns moving, starting with Opt. We use the

potential function

k ·Mmin +
∑

DC

Since this is always non-negative, our result follows if we can establish:

1 When Opt moves distance d, the potential increases by at most kd.

2 When DC moves distance d, the potential decreases by at least d.

DM582, Spring, 2024 Kim Skak Larsen 45

k-Server: DC’s Competitive Ratio (2)

Proof (continued)

Ad 1)

When Opt moves,
∑

DC does not change.

Clearly, if we keep the same matching, the value of that matching will increase

by at most d, which happens if Opt’s server moves away from the DC server

it is matched to. A minimum matching can only be smaller.

DM582, Spring, 2024 Kim Skak Larsen 46

k-Server: DC’s Competitive Ratio (3)

Proof (continued)

Ad 2)

We consider the two cases of algorithm DC.

Assume only one server moves

This server moves away from all other DC servers, increasing
∑

DC by (k−1)d.

Opt has a server on the request, since it moved first. Thus, there exists a

minimum weight matching, where DC’s moving server is matched to Opt’s

server on the request. Thus, Mmin decreases by at least d.

The decrease in potential is then at least kd− (k − 1)d = d.

DM582, Spring, 2024 Kim Skak Larsen 47

k-Server: DC’s Competitive Ratio (4)

Proof (continued)

Assume two servers move

Thus, the servers each move a distance d/2.

As in the previous case, one of these two servers can be matched to the

request in a minimum weight matching. So, the move by that server decreases

Mmin by at least d/2. The other server may increase that term by d/2, but in

all, Mmin does not increase.

With respect to
∑

DC, for any third server, one of the moving servers decrease

the distance as much as the other increases the distance. However, the

distance between the moving servers is decreased by d.

In total, the potential is decreased by at least d. □

DM582, Spring, 2024 Kim Skak Larsen 48

k-Server: Generalizations & Applications

DC generalizes to trees.

More complicated algorithms can perform well on more general metric spaces.

There are obvious applications in the transportation sector.

However, k-server is relevant in many other contexts as well, including paging

(as you from operating systems), weighted paging, disk controls, etc.

DM582, Spring, 2024 Kim Skak Larsen 49

The Treasure Hunt Problem 5

A B?

Either box A or B contains an object we need to find.

The costs of opening A and B are a and b, respectively.

Can we find a good competitive algorithm?

5 This problem is a simplification of problems such as drilling for resources (minerals,
metals, etc.).
DM582, Spring, 2024 Kim Skak Larsen 50

The Treasure Hunt Problem (2)

If we search box A first, the adversary will hide it in box B.

So, our cost is always a+ b, and we get a competitive ratio of a+b
Opt for some

value of Opt.

Thus, we get the best ratio if Opt has a large cost, so we open the cheaper

box first (forcing the adversary to hide the treasure in the more expensive box,

if the adversary wants to maximize the ratio), and get a+b
max{a,b} .

If the boxes are equally expensive to open, this is a ratio of 2.

We will try to do better using randomization. . .

DM582, Spring, 2024 Kim Skak Larsen 51

The Treasure Hunt Problem (3)

Underlying Assumption

The adversary still knows our algorithm, but not our “coin flip”! 6

Randomized Algorithm

Let p be the probability that we open A first (we choose p later).

Since our actions depend on probabilities, we consider the expected ratios:

Adversary hides object in Expected competitive ratio

A pa+(1−p)(a+b)
a

B p(a+b)+(1−p)b
b

The adversary will make it worst possible for us, so we should choose p to

make these options equally good/bad.

6 Formally this is referred to as using an oblivious adversary.
DM582, Spring, 2024 Kim Skak Larsen 52

The Treasure Hunt Problem (4)

pa+(1−p)(a+b)
a = p(a+b)+(1−p)b

b

⇕
pab+ ab+ b2 − pab− pb2 = pa2 + pab+ ab− pab

⇕
b2 − pb2 = pa2

⇕
b2 = p(a2 + b2)

⇕
p = b2

a2+b2

DM582, Spring, 2024 Kim Skak Larsen 53

The Treasure Hunt Problem (5)

Inserting p = b2

a2+b2 into pa+(1−p)(a+b)
a , we get the expected competitive ratio

b2

a2+b2
a+(1− b2

a2+b2
)(a+b)

a

= b2

a2+b2 + 1
a

a2

a2+b2 (a+ b)

= b2+a(a+b)
a2+b2

= a2+b2+ab
a2+b2

Note that this is 3
2 when a = b.

All other situations are better and

lim
b→0+

a2 + b2 + ab

a2 + b2
= lim

b→∞

a2 + b2 + ab

a2 + b2
= 1

DM582, Spring, 2024 Kim Skak Larsen 54

References I

Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge
University Press (1998)

Mark M. Manasse, Lyle A. McGeoch, and Daniel D. Sleator.

Competitive Algorithms for On-Line Problems.

In Proc. 20th Annual ACM Symp. on the Theory of Computing, pages 322–333, 1988.

DM582, Spring, 2024 Kim Skak Larsen 55

