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This document contains written solution to exercise problems from the
course DM582 (spring 2024). The solutions given here might differ from the
solutions discussed in class. In class, we place more emphasis on the intuition
leading to the correct answer. Please do not consider reading these solutions
an alternative to attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

This document will inevitably contain mistakes. If you find some, please
report them to me (Mads) so that I can correct them.
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Sheet 1

CLRS, 24.1-3

Exercise

Suppose that a flow network G = (V,E) violates the assumption that
the network contains a path s⇝ v ⇝ t for all vertices v ∈ V . Let u be a
vertex for which there is no path s⇝ v ⇝ t. Show that there must exist
a maximum flow f in G such that f(u, v) = f(v, u) = 0 for all vertices
u ∈ V .

Note: CLRS defines a path as a sequence of not necessarily distinct
vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E for all i = 1, 2, . . . , k − 1.
Importantly for this exercise, this means that a path from s to v to t may
visit some vertex multiple times. In other books, you might find that such a
sequence is called a walk.

Suggested solution
Let G be a flow network and let f be a maximum flow in G. Suppose that
there is no path s⇝ v ⇝ t for some vertex v.

Then either there is no (s, v)-path or there is no (v, t)-path. Note that
this is not necessarily true if a path cannot use the same vertex twice.

Suppose there is no (s, v)-path and let U be the set of vertices that can
reach v. Then s /∈ U . If t ∈ U then s cannot reach t and the zero flow is
maximum, so suppose t /∈ U . There is no arc xy entering U since then also
x would be able to reach v and thus be in U by definition. Thus, there is
no flow entering U and by flow conservation no arc leaving U has any flow.
Hence, setting the flow to 0 on all arcs with at least one endpoint in U does
not change the value of f and satisfies f(u, v) = f(v, u) = 0 for all u ∈ V .

A very similar argument applies if there is no (v, t)-path. Now, define U
to be the set of vertices that are reachable from v. Then t /∈ U . If s ∈ U
then s cannot reach t and thus the zero flow is maximum, so suppose s /∈ U .
There is no arc leaving U and thus now flow entering U . Hence, setting the
flow to 0 on all arcs with at least one endpoint in U we again obtain the
desired maximum flow.
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CLRS, 24.1-4

Exercise

Let f be a flow in a network, and let α be a real number. The scalar
flow product, denoted αf , is a function from V × V to R defined by

(αf)(u, v) = αf(u, v).

Prove that the flows in a network form a convex set. That is, show that
if f1 and f2 are flows, then so is αf1 + (1 − α)f2 for all α in the range
0 ≤ α ≤ 1.

Suggested solution
Let 0 ≤ α ≤ 1 be a real number and let f1 and f2 be feasible flows in a
network G = (V,E) with capacity function c. Let f = αf1 + (1− α)f2. We
show that f is also feasible in G. We must verify that

• 0 ≤ f(u, v) ≤ c(u, v) for all uv ∈ E and

•
∑

vu∈E f(v, u) =
∑

uv∈E f(u, v) for all v ∈ V \ {s, t}. That is, flow is
conserved.

Let uv ∈ E be arbitrary. We first observe that f(u, v) ≥ 0 since it is the sum
of positive numbers. Since f1 and f2 are feasible we see that

f(u, v) = αf1(u, v) + (1− α)f2(u, v)

≤ αc(u, v) + (1− α)c(u, v)

= (α + 1− α)c(u, v)

= c(u, v),

so also f(u, v) ≤ c(u, v). We now verify that flow is conserved. Let v ∈
V \ {s, t} be arbitrary. We use the fact that f1 and f2 are feasible and the
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definition of f . We obtain∑
vu∈E

f(v, u) =
∑
vu∈E

αf1(v, u) + (1− α)f2(v, u)

=
∑
vu∈E

αf1(v, u) +
∑
vu∈E

(1− α)f2(v, u)

= α

(∑
vu∈E

f1(v, u)

)
+ (1− α)

(∑
vu∈E

f2(v, u)

)

= α

(∑
uv∈E

f1(u, v)

)
+ (1− α)

(∑
uv∈E

f2(u, v)

)
=
∑
uv∈E

αf1(u, v) + (1− α)f2(u, v)

=
∑
uv∈E

f(u, v)

as desired.
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CLRS, 24.1-6

Exercise

Professor Adam has two children who, unfortunately, dislike each other.
The problem is so severe that not only do they refuse to walk to school
together, but in fact each one refuses to walk on any block that the other
child has stepped on that day. The children have no problem with their
paths crossing at a corner. Fortunately both the professor’s house and
the school are on corners, but beyond that he is not sure if it is going
to be possible to send both of his children to the same school. The
professor has a map of his town. Show how to formulate the problem
of determining whether both his children can go to the same school as a
maximum-flow problem.

Suggested solution
Let G = (V,E) be a graph representing the map of the town where corners
are taken as vertices and streets connecting the corners as edges. We set the
capacity of every arc uv ∈ E to 1, let s be the vertex representing the house
and t be the vertex representing the school. We claim that the children can
go to the same school if and only if the value of a maximum flow in G is at
least 2.

Suppose that the children can go the same school. That is, there are two
arc-disjoint paths from s to t. Sending one unit of flow along each path gives
a flow of value 2, so a maximum flow in G has value at least 2.

Conversely, let f be a maximum flow in G and suppose |f | ≥ 2. 1

We now construct two arc-disjoint paths P1 and P2 from s to t. We start
with P = s and extend P arbitrarily using only arcs with flow 1. We must
be able to do this until reaching t or a vertex already on P since otherwise
the last vertex on P has more flow in than out. If we at some point reach a
vertex already on P , we have found a cycle. In this case, we can set the flow
along the cycle to 0 and start over. Since G has a finite number of edges, we
eventually find the desired path.

Once we reach t, set P1 = P and set the flow along P to 0. This results
in a new feasible flow f ′ with |f ′| = |f | − 1 ≥ 1. Apply the same process to
find P2, now only using arcs with flow 1 with respect to f ′. P1 and P2 must
be arc-disjoint since all arcs on P1 have flow 0 w.r.t. f ′.

1We need all flow values to be integer. It is okay to assume this, but we ignore it for now.
We note that may obtain such a flow by letting f be constructed via the Ford-Fulkerson
method.
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CLRS, 24.1-7

Exercise

Suppose that, in addition to edge capacities, a flow network has vertex
capacities. That is, each vertex has a limit on how much flow can pass
through. Show how to transform a flow network with vertex capacities
into an equivalent flow network without vertex capacities, such that a
maximum flow in the original network has the same value as a maximum
flow in the transformed network. How many vertices and edges does the
transformed network have?

Suggested solution
We can use vertex splitting. Let G = (V,E) be a network with vertex ca-
pacities given by a function g : V → R. We obtain a network G′ = (V ′, E ′)
without vertex capacities such that a maximum flow in G′ has the same value
as a maximum flow in G.

For each v ∈ V \ {s, t}, we split v into two new vertices va and vb such
that all arcs entering v now enter va and all arcs leaving v now leave vb.
Furthermore, we add an arc vavb from va to vb with capacity c′(va, vb) = g(v).
All other capacities remain the same.

Now, let f be any feasible flow in G respecting the vertex capacities. We
obtain a feasible flow f ′ in G′ with |f ′| = |f | by letting f ′(ub, va) = f(u, v)
for all arcs uv ∈ E and f(va, vb) =

∑
uv∈E f(u, v).

Since f respects the vertex capacities we have
∑

uv∈E f(u, v) ≤ g(v) for
all v ∈ V and thus also f ′(va, vb) ≤ g(v) = c(va, vb). Since f also respects
the arc capacities f(u, v) ≤ c(u, v) = c′(ub, va) for any uv ∈ E and thus
f ′(ub, va) ≤ c′(ub, va). Thus, f

′ is a feasible flow in G′.
Similarly, one can construct a feasible flow f in G given a feasible flow f ′

in G′ with |f | = |f ′| by simply contracting each pair va, vb to a single vertex.
This flow will respect the vertex capacities since for any vertex v ∈ V the
flow entering va in G′ will have to pass through vavb which has capacity g(v).

The new network G′ has 2|V | − 2 vertices and |E|+ |V | − 2 edges.
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CLRS, 24.2-2

Exercise

In Figure 24.1(b), what is the net flow across the cut ({s, v2, v4}, {v1, v3, t})?
What is the capacity of this cut? The below is the figure being referenced.

Suggested solution
The flow across the cut is 11 + 1 − 4 + 7 + 4 = 19. The capacity of the cut
is 16 + 4 + 7 + 4 = 31. Recall that the intended meaning of ‘the capacity of
the (s, t)-cut (S, T )’ is the maximum amount of flow that we could possibly
send from S to T . Thus, we only consider arcs from S to T when calculating
the capacity.
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CLRS, 24.2-4

Exercise

In the example of Figure 24.6, what is the minimum cut corresponding
to the maximum flow shown? Of the augmenting paths appearing in
the example, which one cancels flow? The below is the figure being
referenced.

Suggested solution
The cut ({s, v1, v2, v4}, {v3, t}) is a minimum cut with capacity equal to the
value of the indicated flow. The augmenting path shown in subfigure (c)
uses the arc v1v2, which cancels the flow along the arc v2v1 in the original
network.
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CLRS, 24.2-5

Exercise

The construction in Section 24.1 to convert a flow network with multiple
sources and sinks into a single-source, single-sink network adds edges
with infinite capacity. Prove that any flow in the resulting network has
a finite value if the edges of the original network with multiple sources
and sinks have finite capacity.

Suggested solution
Let f be a flow in the resulting network and let su be an arbitrary arc leaving
the supersource s (if there is no such arc then the original network has no
source). By construction, u cannot have an arc to the supersink t since this
would require u to be both a source and a sink in the original network. Since
all capacites of arcs leaving u are finite, a finite amount of flow leaves u. Since
the amount of flow leaving u equals the amount of flow entering u, f(s, u)
must also be finite which is what we wanted.
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CLRS, Problem 24.4

Exercise

Let G = (V,E) be a flow network with source s, sink t, and integer
capacities. Suppose that you are given a maximum flow in G.

a. Suppose that the capacity of a single edge (u, v) ∈ E increases by
1. Give an O(V +E)-time algorithm to update the maximum flow.

b. Suppose that the capacity of a single edge (u, v) ∈ E decreases by
1. Give an O(V +E)-time algorithm to update the maximum flow.

Suggested solution
For the sake of simplicity we assume that the given maximum flow f is an
integer flow and that no arcs entering s have flow.

In both cases, the algorithms given will execute BFS a constant number
of times and otherwise use only constant time. This gives the desired runtime
of O(V + E).

a. We start by observing that the value of a maximum flow can increase
by at most 1 as a result of the increase. Thus, updating the residual
network accordingly and doing a single iteration of the Ford-Fulkerson
method (e.g. using BFS) will either result in augmenting the flow by
at least 1 or concluding that the flow is already maximum (if there is
no (s, t)-path in the residual network).

b. If f(u, v) ≤ c(u, v)−1, then no change is required to make the flow fea-
sible after decreasing the capacity of uv. Since the value of a minimum
cut cannot increase by decreasing the capacity of an arc, we conclude
that the same flow is still maximum.

Otherwise, obtain f ′ by setting f ′(u, v) = f(u, v)− 1. Note that u is a
sink (more flow in than out) with respect to f ′ and that v is a source.

We look for an augmenting path from v to u in Gf ′ . If we find such
a path P , then augment the flow along P by 1 (here, we use that f is
integer-valued).

If we find no such path, then find a path from t to v and augment the
flow along this path by 1. Such a path must exist since there is flow
from v to t. Likewise, find a path from u to s in the residual network
and augment the flow along this path by 1.
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